本试题 “已知a=(sin(π6x-π3),2),b=(2,sin(π6x+π3)+2),f(x)=a•b(1)求函数y=f(x)的解析式;(2)若y表示某海岸港口的深度(米),x表示一天内时间(小时);当...” 主要考查您对已知三角函数值求角
向量数量积的运算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
反三角函数的定义:
(1)反正弦:在闭区间上符合条件sinx=a(-1≤a≤1)的角x,叫做实数a的反正弦,记作arcsina,即x=arcsina,其中x∈,且a=sinx;
注意arcsina表示一个角,这个角的正弦值为a,且这个角在内(-1≤a≤1)。
(2)反余弦:在闭区间上,符合条件cosx=a(-1≤a≤1)的角x,叫做实数a的反余弦,记作arccosa,即x=arccosa,其中x∈[0,π],且a=cosx。
(3)反正切:在开区间内,符合条件tanx=a(a为实数)的角x,叫做实数a的反正切,记做arctana,即x=arctana,其中x∈,且a=tanx。
反三角函数的性质:
(1)sin(arcsina)=a(-1≤a≤1),cos(arccosa)=a(-1≤a≤1),
tan(arctana)=a;
(2)arcsin(-a)=-arcsina,arccos(-a)=π-arccosa,arctan(-a)=-arctana;
(3)arcsina+arccosa=;
(4)arcsin(sinx)=x,只有当x在内成立;同理arccos(cosx)=x只有当x在闭区间[0,π]上成立。
已知三角函数值求角的步骤:
(1)由已知三角函数值的符号确定角的终边所在的象限(或终边在哪条坐标轴上);
(2)若函数值为正数,先求出对应锐角α1,若函数值为负数,先求出与其绝对值对应的锐角α1;
(3)根据角所在象限,由诱导公式得出0~2π间的角,如果适合条件的角在第二象限,则它是π-α1;如果适合条件的角在第三象限,则它是π+α1;在第四象限,则它是2π-α1;如果是-2π到0的角,在第四象限时为-α1,在第三象限为-π+α1,在第二象限为-π-α1;
(4)如果要求适合条件的所有角,则利用终边相同的角的表达式来写出。
两个向量数量积的含义:
如果两个非零向量,,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。
叫在上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
数量积的的运算律:
已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1);
(2);
(3)。
向量数量积的性质:
设两个非零向量
(1);
(2);
(3);
(4);
(5)当,同向时,;当与反向时,;当为锐角时,为正且,不同向,;当为钝角时,为负且,不反向,。
与“已知a=(sin(π6x-π3),2),b=(2,sin(π6x+π3)+2),f(x)=a•b(1...”考查相似的试题有: