本试题 “设分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.(Ⅰ)求该椭圆的离心率;(Ⅱ)设点 满足,求该椭圆的方程.” 主要考查您对椭圆的定义
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
椭圆的第一定义:
平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。
椭圆的第二定义:
平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。
椭圆的定义应该包含几个要素:
与“设分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交...”考查相似的试题有: