本试题 “已知椭圆x24+y29=1的上下两个焦点分别为F1、F2,点P为该椭圆上一点,若|PF1|,|PF2|为方程x2+2mx+5=0的两根,则m=______.” 主要考查您对椭圆的性质(顶点、范围、对称性、离心率)
一元一次方程及其应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
椭圆的离心率:
椭圆的焦距与长轴长之比叫做椭圆的离心率。
椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:。
5、离心率:;
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。
。
利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。
椭圆中求最值的方法:
求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,从而求离心率或离心率的取值范围.
一元一次方程的定义:
在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的整式方程叫一元一次方程。注:主要用于判断一个等式是不是一元一次方程。
一元一次方程标准形式:
只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程。一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。其中a是未知数的系数,b是常数,x是未知数。未知数一般设为x,y,z。
一元一次方程的分类:
1、总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=62、等式两边都含未知数。如:302x+400=400x,40x+20=60x.
方程特点:
(1)方程为整式方程。
(2)方程有且只含有一个未知数。
(3)方程中未知数的最高次数是1。
一元一次方程判断方法:
通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
一元一次方程必须同时满足4个条件:
⑴它是等式;
⑵分母中不含有未知数;
⑶未知数最高次项为1;
⑷含未知数的项的系数不为0。
与“已知椭圆x24+y29=1的上下两个焦点分别为F1、F2,点P为该椭圆...”考查相似的试题有: