返回

初中三年级数学

首页
  • 填空题
    如图,直角坐标系中,⊙O和⊙C的圆心坐标分别是O(0,0),C(5,0),点A(2,0)是⊙O上的点,将⊙C绕点A按逆时针方向旋转360°,在这个过程中,⊙O和⊙C共相切(    )次.

    本题信息:2012年福建省期中题数学填空题难度一般 来源:马明明
  • 本题答案
    查看答案
本试题 “如图,直角坐标系中,⊙O和⊙C的圆心坐标分别是O(0,0),C(5,0),点A(2,0)是⊙O上的点,将⊙C绕点A按逆时针方向旋转360°,在这个过程中,⊙O和⊙C共相切( ...” 主要考查您对

图形旋转

圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 图形旋转
  • 圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)
定义:
在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
图形旋转性质:
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
旋转对称中心
把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做 旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做 旋转角。(旋转角大于0°小于360°)
圆和圆的位置关系:
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。

圆心距:两圆圆心的距离叫做两圆的圆心距。

圆和圆位置关系的性质与判定:
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r(没有交点)
两圆外切d=R+r (有一个交点,叫切点)
两圆相交R-r<d<R+r(R≥r)(有两个交点)
两圆内切d=R-r(R>r) (有一个交点,叫切点)
两圆内含d<R-r(R>r)(没有交点)

两圆相切的性质:
(1)连心线:两圆圆心的连线。
(2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。


发现相似题
与“如图,直角坐标系中,⊙O和⊙C的圆心坐标分别是O(0,0),C(5...”考查相似的试题有: