返回

高中三年级数学

首页
  • 填空题
    (选做题)
    在平面直角坐标系下,曲线C1(t为参数),曲线C2(θ为参数)。若曲线C1、C2有公共点,则实数a的取值范围(    )。
    本题信息:2012年广东省模拟题数学填空题难度一般 来源:张玲玲
  • 本题答案
    查看答案
本试题 “(选做题)在平面直角坐标系下,曲线C1:(t为参数),曲线C2:(θ为参数)。若曲线C1、C2有公共点,则实数a的取值范围( )。” 主要考查您对

直线与圆的位置关系

圆的参数方程

直线的参数方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 直线与圆的位置关系
  • 圆的参数方程
  • 直线的参数方程

直线与圆的位置关系

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
其图像如下:


直线和圆的位置关系的性质:

(1)直线l和⊙O相交d<r
(2)直线l和⊙O相切d=r;
(3)直线l和⊙O相离d>r。


直线与圆位置关系的判定方法:

(1)代数法:判断直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0的位置关系,可由
 
推出mx2+nx+p=0,利用判别式△进行判断.
△>0则直线与圆相交;
△=0则直线与圆相切;
△<0则直线与圆相离.
(2)几何法:已知直线Ax+By+C=0和圆,圆心到直线的距离
d<r则直线和圆相交;
d=r则直线和圆相切;
d>r则直线和圆相离.
特别提醒:
(1)上述两种方法,以利用圆心到直线的距离进行判定较为简捷,而判别式法也适用于直线与椭圆、双曲线、抛物线位置关系的判断.
(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.

直线与圆位置关系的判定方法列表如下:

直线与圆相交的弦长公式:

(1)几何法:如图所示,直线l与圆C相交于A、B两点,线段AB的长即为l与圆相交的弦长。
设弦心距为d,半径为r,弦为AB,则有|AB|=

(2)代数法:直线l与圆交于直线l的斜率为k,则有
当直线AB的倾斜角为直角,即斜率不存在时,|AB|=


圆的参数方程:

(θ∈[0,2π)),(a,b)为圆心坐标,r为圆的半径,θ为参数(x,y)为经过点的坐标。

 


圆心为原点,半径为r的圆的参数方程:

如图,如果点P的坐标为(x,y),圆半径为r, 根据三角函数定义,点P的横坐标x、纵坐标y都是θ的函数,即
 


直线的参数方程:

过定点倾斜角为α的直线的参数方程为(t为参数)。


直线的参数方程及其推导过程:

e是与直线l平行且方向向上(l的倾斜角不为0)或向右(l的倾斜角为0)的单位方向向量(单位长度与坐标轴的单位长度相同).直线l的倾斜角为α,定点M0、动点M的坐标分别为
 

直线的参数方程中参数t的几何意义是:表示参数t对应的点M到定点Mo的距离,当同向时,t取正数;当异向时,t取负数;当点M与Mo重合时,t=0.


发现相似题
与“(选做题)在平面直角坐标系下,曲线C1:(t为参数),曲线C2...”考查相似的试题有: