返回

高中一年级数学

首页
  • 单选题
    下列命题正确的是(     )

    A.若=,则=
    B.若|+|=|-|,则=0
    C.若////,则//
    D.若是单位向量,则=1
    本题信息:2010年湖北省期末题数学单选题难度一般 来源:张玲玲
  • 本题答案
    查看答案
本试题 “下列命题正确的是( )A.若=,则=B.若|+|=|-|,则=0C.若//,//,则//D.若与是单位向量,则=1” 主要考查您对

向量共线的充要条件及坐标表示

向量数量积的运算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向量共线的充要条件及坐标表示
  • 向量数量积的运算

向量共线的充要条件:

向量共线,当且仅当有唯一一个实数λ,使得

向量共线的几何表示:

,其中,当且仅当时,向量共线。


向量共线(平行)基本定理的理解:

(1)对于向量aa≠0),b,如果有一个实数λ,使得ba,那么由向量数乘的定义知,ab共线.
(2)反过来,已知向量ab共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当ab同方向时,有b=μa;当ab反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.


两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。


数量积的的运算律:

已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1)
(2)
(3)


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,