返回

高中三年级数学

首页
  • 解答题
    在平面直角坐标系xOy中,设曲线C1所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2
    (1)求椭圆C2的标准方程;
    (2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.Ml上的点(与O不重合).
    ①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
    ②若Ml与椭圆C2的交点,求△AMB的面积的最小值.

    本题信息:数学解答题难度极难 来源:未知
  • 本题答案
    查看答案
本试题 “在平面直角坐标系xOy中,设曲线C1:所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.(1)求椭圆C2...” 主要考查您对

椭圆的定义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 椭圆的定义

椭圆的第一定义:

平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。

椭圆的第二定义:

平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。


椭圆的定义应该包含几个要素:

 
利用椭圆的定义解题:
 
当题目中出现一点在椭圆上的条件时,注意使用定义

发现相似题
与“在平面直角坐标系xOy中,设曲线C1:所围成的封闭图形的面积为...”考查相似的试题有: