返回

高中三年级数学

首页
  • 解答题
    (本小题满分15分)
    如图所示,一科学考察船从港口出发,沿北偏东角的射线方向航行,而在离港口为正常数)海里的北偏东角的A处有一个供给科考船物资的小岛,其中.现指挥部需要紧急征调沿海岸线港口正东m)海里的B处的补给船,速往小岛A装运物资供给科考船,该船沿BA方向全速追赶科考船,并在C处相遇.经测算当两船运行的航向与海岸线OB围成的三角形OBC的面积最小时,这种补给最适宜.
    ⑴ 求S关于m的函数关系式
    ⑵ 应征调m为何值处的船只,补给最适宜.

    本题信息:数学解答题难度容易 来源:未知
  • 本题答案
    查看答案
本试题 “(本小题满分15分)如图所示,一科学考察船从港口出发,沿北偏东角的射线方向航行,而在离港口(为正常数)海里的北偏东角的A处有一个供给科考船物资的小岛,...” 主要考查您对

正弦定理

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 正弦定理

正弦定理:

在一个三角形中,各边和它所对角的正弦的比相等,即=2R。
有以下一些变式:
(1)
(2)
(3)


正弦定理在解三角形中的应用:

(1)已知两角和一边解三角形,只有一解。
(2)已知两边和其中一边的对角,解三角形,要注意对解的个数的讨论。可按如下步骤和方法进行:先看已知角的性质和已知两边的大小关系。
如已知a,b,A,
(一)若A为钝角或直角,当b≥a时,则无解;当a≥b时,有只有一个解;
(二)若A为锐角,结合下图理解。
①若a≥b或a=bsinA,则只有一个解。
②若bsinA<a<b,则有两解。
③若a<bsinA,则无解。

也可根据a,b的关系及与1的大小关系来确定。