返回

高中数学

首页
  • 填空题
    函数f(x)=ax-1+3(a>0,且a≠1)的图象过一个定点P,且点P在直线mx+ny-1=0(m>0且n>0)上,则
    1
    m
    +
    4
    n
    的最小值是______.
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “函数f(x)=ax-1+3(a>0,且a≠1)的图象过一个定点P,且点P在直线mx+ny-1=0(m>0且n>0)上,则1m+4n的最小值是______.” 主要考查您对

指数函数模型的应用

基本不等式及其应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 指数函数模型的应用
  • 基本不等式及其应用
指数函数模型的定义

恰当选择自变量将问题的目标表示成自变量的函数f(x)=a·bx+c(a、b、c为常数,a≠0,b>0,b≠1)的形式,进而结合指数函数的性质解决问题。

指数型复合函数的性质的应用:

(1)与指数函数有关的复合函数基本上有两类:
;②.无论是哪一类,要搞清楚复合过程,才能确定复合函数的值域和单调区间,具体问题中,a的取值不定时,要对a进行分类讨论.
(2)对于形如一类的指数型复合函数,有以下结论:
①函数的定义域与f(x)的定义域相同;
②先确定函数f(x)的值域,再根据指数函数的值域、单调性,确定函数的值域;
③当a>l时,函数与函数f(x)的单调性相同;当O<a<l时,函数与函数f(x)的单调性相反.


基本不等式:

(当且仅当a=b时取“=”号);
变式:①(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
;③;④


对基本不等式的理解:

(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即


对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2
(2)x+y=S(定值),那么当x=y时,积xy有最大值
(3)已知x2+y2=p,则x+y有最大值为

应用基本的不等式解题时:

注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。

利用基本不等式比较实数大小:

(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。 


基本不等式的几种变形公式: