返回

高中一年级数学

首页
  • 单选题
    已知二次函数有两个不同的零点,则m的取值范围是( )
    A.    B.
    C.D.

    本题信息:数学单选题难度容易 来源:未知
  • 本题答案
    查看答案
本试题 “已知二次函数有两个不同的零点,则m的取值范围是( )A. B.C.D.” 主要考查您对

一次函数的性质与应用

二次函数的性质及应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 一次函数的性质与应用
  • 二次函数的性质及应用

一次函数的定义和图像:

(1)定义:一般地,形如y=kx+b(k、b为常数,k≠0)的函数,叫做一次函数,其中正比例函数是一次函数的特殊情况。
(2)图象:一次函数的图像是一条直线,过(0,b),(,0)两点,其中k叫做该直线的斜率,b叫做该直线在y轴上的截距。


一次函数的性质:

(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小。
(3)当b=0时,一次函数变为正比例函数,是奇函数;当b≠0时,它既不是奇函数也不是偶函数。
(4)k的大小表示直线与x轴的倾斜程度

一次函数y=kx+b(k不等于零)的图像:

当k>0时,
若b=0,则图像过第一、三象限;
若b>0,则图像过第一、二、三象限;
若b<0,则图像过第一、三、四象限。

当k>0时,
若b=0,则图像过第二、四象限;
若b>0,则图像过第一、二、四象限;
若b<0,则图像过第二、三、四象限。

应用:应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。


二次函数的定义:

一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。

二次函数的图像

是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴
③有顶点
④c表示抛物线与y轴的交点坐标:(0,c)。

性质:二次函数y=ax2+bx+c,

①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数;
②当a<0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。


二次函数(a,b,c是常数,a≠0)的图像:

图像 函数的性质
a>0 定义域 x∈R(个别题目有限制的,由解析式确定)
 
值域 a>0 a<0
 
奇偶性 b=0时为偶函数,b≠0时为非奇非偶函数
a<0 单调性 a>0 a<0
图像特点

二次函数的解析式:

(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为 ;
(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为


二次函数在闭区间上的最值的求法:

(1)二次函数 在区间[p,g]上的最值问题
一般情况下,需要分三种情况讨论解决.
当a>0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令 .
 



特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.

(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:
 
特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。

二次函数的应用

(1)应用二次函数才解决实际问题的一般思路:
理解题意;建立数学模型;解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。