返回

高中三年级数学

首页
  • 解答题
    已知a>0,b∈R,函数
    (Ⅰ)证明:当0≤x≤1时,
    (i)函数的最大值为|2a-b|﹢a;
    (ii)+|2a-b|﹢a≥0;
    (Ⅱ)若-1≤≤1对x∈[0,1]恒成立,求a+b的取值范围。
    本题信息:2012年浙江省高考真题数学解答题难度极难 来源:刘佩
  • 本题答案
    查看答案
本试题 “已知a>0,b∈R,函数。(Ⅰ)证明:当0≤x≤1时,(i)函数的最大值为|2a-b|﹢a;(ii)+|2a-b|﹢a≥0;(Ⅱ)若-1≤≤1对x∈[0,1]恒成立,求a+b的取值范围。” 主要考查您对

函数的最值与导数的关系

简单线性规划问题(用平面区域表示二元一次不等式组)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的最值与导数的关系
  • 简单线性规划问题(用平面区域表示二元一次不等式组)

函数的最大值和最小值:

在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。


利用导数求函数的最值步骤:

(1)求f(x)在(a,b)内的极值;
(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。

 用导数的方法求最值特别提醒:

①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;
②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;
③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。 


生活中的优化问题:

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,
不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.

用导数解决生活中的优化问题应当注意的问题:

(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;
(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;
(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.

利用导数解决生活中的优化问题:

 (1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.
 (2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,
  ①求函数y =f(x)在(a,b)上的极值;
  ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
  (3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.


二元一次不等式表示的平面区域:

二元一次不等式ax+by+c>0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域。不等式ax+by+c<0表示的是另一侧的平面区域。

线性约束条件:

关于x,y的一次不等式或方程组成的不等式组称为x,y的线性约束条件;

线性目标函数:

关于x、y的一次式欲达到最大值或最小值所涉及的变量x、y的解析式,叫做线性目标函数;

线性规划问题

一般地,求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。

可行解、可行域和最优解:

满足线性约束条件的解(x,y)称为可行解;由所有可行解组成的集合称为可行域; 使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解。

用一元一次不等式(组)表示平面区域:

(1)一般地,直线l:ax+by+c=0把直角坐标平面分成了三个部分:①直线l上的点(x,y)的坐标满足ax+by+c=0;②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c>0;③直线l另一侧的平面区域内的点(x,y)的坐标满足ax+by+c<0.所以,只需在直线l的某一侧的平面区域内,任取一特殊点(x0,y0),从ax0+by0+c的值的正负,即可判断不等式表示的平面区域,可简称为,特殊点定域”.
(2)不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分. 


线性规划问题求解步骤:

(1)确定目标函数;
(2)作可行域;
(3)作基准线(z=0时的直线);
(4)平移找最优解;
(5)求最值。

线性规划求最值线性规划求最值问题:
(1)要充分理解目标函数的几何意义,诸如直线的截距、两点间的距离(或平方)、点到直线的距离、过已知两点的直线斜率等.
   (2)求最优解的方法①将目标函数的直线平移,最先通过或最后通过的点为最优解,②利用围成可行域的直线的斜率来判断.若围成可行域的直线,且目标函数的斜率k满足的交点一般为最优解.在求最优解前,令z=0的目的是确定目标函数在可行域的什么位置有可行解,值得注意的是,有些问题中可能要求x,y∈N(即整点),它不一定在边界上.特别地,当表示线性目标函数的直线与可行域的某条边平行()时,其最优解可能有无数个,用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键.可先将题目的量分类,列出表格,理清头绪,然后列出不等式组(方程组),寻求约束条件,并就题目所述找到目标函数.

线性规划的实际应用在线性规划的实际问题中:

主要掌握两种类型:
一、给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;
二、给定一项任务,问怎样统筹安排,能使完成这项任务耗费的人力、物力资源最小.
(l)用图解法解决线性规划问题的一般步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.
(2)整数规划的求解,可以首先放松可行解必须为整数的要求,转化为线性规划求解,若所求得的最优解恰为整数,则该解即为整数规划的最优解;若所求得的最优解不是整数,则视所得非整数解的具体情况增加条件;若这两个子问题的最优解仍不是整数,再把每个问题继续分成两个子问题求解,……,直到求出整数最优解为止,