本试题 “已知曲线x216-m-y2m=1.(1)当曲线是椭圆时,求m的取值范围,并写出焦点坐标;(2)当曲线是双曲线时,求m的取值范围,并写出焦点坐标.” 主要考查您对椭圆的定义
双曲线的定义
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
椭圆的第一定义:
平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。
椭圆的第二定义:
平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。
椭圆的定义应该包含几个要素:
双曲线第一定义:
平面内与两定点F1,F2的距离的差的绝对值等于定长2a(小于|F1F2|)的点的轨迹叫双曲线,即||PF1|-|PF2||=2a(2a<|F1F2|)。若2a=|F1F2|,则轨迹是以F1,F2为端点射线,若2a>|F1F2|,则轨迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
双曲线的第二定义:
平面内与一个定点F和一条定直线l的距离的比是常数e(e>1)的动点的轨迹叫双曲线。
双曲线的理解:
的轨迹为近的一支; 的一支。
注:的延长线和反向延长线(两条射线);则轨迹不存在;的垂直平分线。
与“已知曲线x216-m-y2m=1.(1)当曲线是椭圆时,求m的取值范围...”考查相似的试题有: