返回

高中数学

首页
  • 单选题
    下列命题正确的是(  )
    A.若
    a
    b
    =
    a
    c
    ,则
    b
    =
    c
    B.若|
    a
    +
    b
    |=|
    a
    -
    b
    |,则
    a
    b
    =0
    C.若
    a
    b
    b
    c
    ,则
    a
    c
    D.若
    a
    b
    是单位向量,则
    a
    b
    =1

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “下列命题正确的是( )A.若a•b=a•c,则b=cB.若|a+b|=|a-b|,则a•b=0C.若a∥b,b∥c,则a∥cD.若a与b是单位向量,则a•b=1” 主要考查您对

向量数量积的运算

向量模的计算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向量数量积的运算
  • 向量模的计算

两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。


数量积的的运算律:

已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1)
(2)
(3)


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,


向量的模

,则有向线段的长度叫做向量的长度或模,记作:,则 

 向量模的坐标表示:

(1)若,则
(2)若,那么


求向量的模:

求向量的模主要是利用公式来解。