本试题 “以A(1,3)和B(-5,1)为端点的线段AB的中垂线方程是A.3x-y+8=0B.3x+y+4=0C.2x-y-6=0D.3x+y+8=0” 主要考查您对两直线平行、垂直的判定与性质
直线的方程
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
两直线平行、垂直的判定的文字表述:
平行判断的文字表述:如果两条不重合的直线(存在斜率)平行,则它们的斜率相等;反之,如果两条不重合直线的斜率相等,则它们平行;
垂直判断的文字表述:如果两条直线都有斜率,且它们互相垂直,那么它们斜率之积为-1;反之,如果两条直线的斜率之积为-1,那么它们互相垂直
两直线平行、垂直的判定的符号表示:
1、若,
(1);
(2)。
2、若,,且A1、A2、B1、B2都不为零,
(1);
(2)。
两直线平行的判断的理解:
成立的前提条件是两条直线的斜率存在,分别为
当两条直线不重合且斜率均不存在时,
两直线垂直的判断的理解:
成立的前提条件是斜率都存在且不等于零.
②两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直,这样,两条直线垂直的判定就可叙述为:一般地,,或一条直线的斜率不存在,同时另一条直线的斜率等于零。
求与已知直线垂直的直线方程的方法:
直线方程的定义:
以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
基本的思想和方法:
求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后釆用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。
直线方程的几种形式:
1.点斜式方程:
(1),(直线l过点,且斜率为k)。
(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。
3.两点式方程:已知直线经过(x1,y1),(x2,y2)两点,则直线方程为:
4.截距式方程:已知直线在x轴和y轴上的截距为a,b,则直线方程为:(a、b≠0)。
5.一般式方程:(1)定义:任何直线均可写成:Ax+By+C=0(A,B不同时为0)的形式。(2)特殊的方程如:平行于x轴的直线:y=b(b为常数);平行于y轴的直线:x=a(a为常数)。
几种特殊位置的直线方程:
与“以A(1,3)和B(-5,1)为端点的线段AB的中垂线方程是A.3x-...”考查相似的试题有: