返回

高中数学

首页
  • 解答题
    在平面直角坐标系中,已知向量
    a
    =(-1,2),又点A(8,0),B(-8,t),C(8sinθ,t).
    (I)若
    AB
    a
    求向量
    OB
    的坐标;
    (Ⅱ)若向量
    AC
    与向量
    a
    共线,当tsinθ取最大值时,求
    OA
    OC

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “在平面直角坐标系中,已知向量a=(-1,2),又点A(8,0),B(-8,t),C(8sinθ,t).(I)若AB⊥a求向量OB的坐标;(Ⅱ)若向量AC与向量a共线,当tsinθ取最...” 主要考查您对

平面向量基本定理及坐标表示

用数量积判断两个向量的垂直关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平面向量基本定理及坐标表示
  • 用数量积判断两个向量的垂直关系

平面向量的基本定理:

如果是同一平面内的两个不共线的向量,那么对这一平面内的任一向量存在唯一的一对有序实数使成立,不共线向量表示这一平面内所有向量的一组基底。

平面向量的坐标运算:

在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量为基底,则平面内的任一向量可表示为,称(x,y)为向量的坐标,=(x,y)叫做向量的坐标表示。


基底在向量中的应用:

(l)用基底表示出相关向量来解决向量问题是常用的方法之一.
(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。

用已知向量表示未知向量:

用已知向量表示未知向量,一定要结合图像,可从以下角度如手:
(1)要用基向量意识,把有关向量尽量统一到基向量上来;
(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;
(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。


两向量垂直的充要条件:

非零向量,那么,所以可以根据此公式判断两个向量是否垂直。


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,