本试题 “已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0}.(1)若a=3,求A;(2)若A∩B=∅,求实数a的取值范围.” 主要考查您对集合的含义及表示
集合间的基本关系
一元二次不等式及其解法
绝对值不等式
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
集合的概念:
1、集合:一般地我们把一些能够确定的不同对象的全体称为集合(简称集); 集合通常用大写的拉丁字母表示,如A、B、C、……。
元素:集合中每个对象叫做这个集合的元素,元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系:
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作 3、集合分类根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
常用数集及其表示方法:
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N*或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
集合中元素的特性:
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. 任何一个元素要么属于该集合,要么不属于该集合,二者必具其一。
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
易错点:
(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z
集合与集合的关系有“包含”与“不包含”,“相等”三种:
1、 子集概念:
一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含A,记作AB(或说A包含于B),
也可记为BA(B包含A),此时说A是B的子集;A不是B的子集,记作AB,读作A不包含于B
2、集合相等:
对于集合A和B,如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就说集合A和集合B相等,记作A=B
3、真子集:
对于集合A与B,如果AB并且A≠B,则集合A是集合B的真子集,记作AB(BA),读作A真包含于B(B真包含A)
集合间基本关系:
性质1:
(1)空集是任何集合的子集,即A;
(2)空集是任何非空集合的真子集;
(3)传递性:AB,BCAC;AB,BCAC;
(4)AB,BAA=B。
性质2:
子集个数的运算:含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。
集合间基本关系性质:
(1)空集是任何集合的子集,即A;
(2)空集是任何非空集合的真子集;
(3)传递性:
(4)集合相等:
(5)含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。
一元二次不等式的概念:
只含有一个未知数,并且未知数的最高次数是2 的不等式称为一元二次不等式.
一元二次不等式的解集:
使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次不等式的解集。
同解不等式:
如果两个不等式的解集相同,那么这两个不等式叫做同解不等式,如果一个不等式变形为另一个不等式时,这两个不等式是同解不等式,那么这种变形叫做不等式的同解变形。
二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:
解不等式的过程:
解不等式的过程就是将不等式进行同解变形,化为最简形式的同解不等式的过程.变形时要注意条件的限制,比如:分母是否有意义,定义域是否有限制等.
解一元二次不等式的一般步骤为:
(1)对不等式变形,使一端为零且二次项系数大于零;(2)计算相应的判别式;(3)当△≥0时,求出相应的一元二次方程的根;(4)根据二次函数图象写出一元二次不等式的解集.
解含有参数的一元二次不等式:
(1)要以二次项系数与零的大小作为分类标准进行分类讨论;(2)转化为标准形式的一元二次不等式(即二次项系数大于零)后,再以判别式与零的大小作为分类标准进行分类讨论;(3)如果判别式大于零,但两根的大小还不能确定,此时再以两根的大小作为分类标准进行分类讨论。
绝对值不等式:
当a>0时,有;
或x<-a 。
与“已知集合A={x||x-a|≤1},B={x|x2-5x+4≥0}.(1)若a=3,求A;...”考查相似的试题有: