返回

高中数学

首页
  • 解答题
    已知f(x)=ax+b(a>0且a≠1,b为常数)的图象经过点(1,1)且0<f(0)<1,记m=
    1
    2
    [f-1(x1)+f-1(x2)]
    n=f-1(
    x1+x2
    2
    )
    (x1、x2是两个不相等的正实数),试比较m、n的大小.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知f(x)=ax+b(a>0且a≠1,b为常数)的图象经过点(1,1)且0<f(0)<1,记m=12[f-1(x1)+f-1(x2)],n=f-1(x1+x22)(x1、x2是两个不相等的正实数),试比...” 主要考查您对

对数函数的解析式及定义(定义域、值域)

反函数

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 对数函数的解析式及定义(定义域、值域)
  • 反函数

对数函数的定义:

一般地,我们把函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R。

对数函数的解析式:

y=logax(a>0,且a≠1)


在解有关对数函数的解析式时注意

在涉及到对数函数时,一定要注意定义域,即满足真数大于零;求值域时,还要考虑底数的取值范围。


定义

设式子y=f(x)表示y是x的函数,定义域为A,值域为C,从式子y=f(x)中解出x,得到式子x=(y),如果对于y在C中的任何一个值,通过式子x=(y),x在A中都有唯一确定的值和它对应,那么式子x=(y)就表示y是x的函数,这样的函数叫做y=f(x)的反函数,记作x=f-1(y),即x=(y)=f-1(y),一般对调x=f-1(y)中的字母x,y,把它改写成y=f-1(x)。


反函数的一些性质

(1)反函数的定义域和值域分别是原函数的值域和定义域,称为互调性;
(2)定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数;
(3)函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称,但要注意:函数y=f(x)的图象与其反函数x=(y)=f-1(y)的图象相同。(对称性)
(4)设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。
(5)函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x )的反函数是y=f(x),称为互反性,但要特别注意
(6)函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上,
互为反函数且有一个交点是,它不再直线y=x上。
(7)还原性:


求反函数的步骤:

(1)将y=f(x)看成方程,解出x=f-1(y);
(2)将x,y互换得y =f-1(x);
(3)写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定);
另外:分段函数的反函数可以分别求出各段函数的反函数再合成。