返回

高中数学

首页
  • 填空题
    设函数f(x)=-
    3
    2
    sin2x+
    1
    2
    ,A、B、C为△ABC的三个内角,若cosB=
    1
    3
    f(
    C
    2
    )=-
    1
    4
    ,且C为锐角,则sinA=______.
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “设函数f(x)=-32sin2x+12,A、B、C为△ABC的三个内角,若cosB=13,f(C2)=-14,且C为锐角,则sinA=______.” 主要考查您对

正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)

正弦函数和余弦函数的图象:正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的图象分别叫做正弦曲线和余弦曲线,

1.正弦函数

2.余弦函数

函数图像的性质
正弦、余弦函数图象的性质:

由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。




正弦、余弦函数图象的性质:


由上表知,正弦与余弦函数的定义域都是R,值域都是[-1,1],对y=sinx,当时,y取最大值1,
时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y取最小值-1。