返回

高中数学

首页
  • 单选题
    函数f(x)=2
    2
    |sinx•cosx|•
    sin(x-
    π
    4
    )
    sinx-cosx
    是(  )
    A.周期为
    π
    2
    的偶函数
    B.周期为π的非奇非偶函数
    C.周期为π的偶函数
    D.周期为
    π
    2
    的非奇非偶函数

    本题信息:2010年黄冈模拟数学单选题难度容易 来源:未知
  • 本题答案
    查看答案
本试题 “函数f(x)=22|sinx•cosx|•sin(x-π4)sinx-cosx是( )A.周期为π2的偶函数B.周期为π的非奇非偶函数C.周期为π的偶函数D.周期为π2的非奇非偶函数” 主要考查您对

函数的奇偶性、周期性

同角三角函数的基本关系式

任意角的三角函数

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的奇偶性、周期性
  • 同角三角函数的基本关系式
  • 任意角的三角函数

函数的奇偶性定义:

偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则称函数f(x)为偶函数。
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。 
 
函数的周期性

(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
周期函数定义域必是无界的。
(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小正周期。
周期函数并非都有最小正周期,如常函数f(x)=C。


奇函数与偶函数性质:

(1)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数。

注:定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.


1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.

2、函数的周期性    令a , b 均不为零,若: 
(1)函数y = f(x) 存在 f(x)=f(x + a) ==> 函数最小正周期 T=|a| 
(2)函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期 T=|b-a| 
(3)函数y = f(x) 存在 f(x) = -f(x + a) ==> 函数最小正周期 T=|2a| 
(4)函数y = f(x) 存在 f(x + a) =  ==> 函数最小正周期 T=|2a| 
(5)函数y = f(x) 存在 f(x + a) =   ==> 函数最小正周期 T=|4a|


同角三角函数的关系式:

(1)
(2)商数关系:
(3)平方关系:


同角三角函数的基本关系的应用: 

已知一个角的一种三角函数值,根据角的终边的位置利用同角三角函数的基本关系,可以求出这个角的其他三角函数值.

同角三角函数的基本关系的理解

(1)在公式中,要求是同一个角,如不一定成立.
(2)上面的关系式都是对使它的两边具有意义的那些角而言的,如:基本三角关系式。对一切α∈R成立; Z)时成立.
(3)同角三角函数的基本关系的应用极为为广泛,它们还有如下等价形式: 

(4)在应用平方关系时,常用到平方根、算术平方根和绝对值的概念,应注意“±”的选取. 间的基本变形 三者通过 ,可知一求二,有关 等化简都与此基本变形有广泛的联系,要熟练掌握。


任意角的三角函数的定义:

设α是任意一个角,α的终边上任意一点P的坐标是(x,y),它与原点的距离是,那么
以上以角为自变量,比值为函数的六个函数统称为三角函数。三角函数值只与角的大小有关,而与终边上点P的位置无关。

象限角的三角函数符号:

一全正,二正弦,三两切,四余弦。


特殊角的三角函数值:(见下表)