返回

高中三年级数学

首页
  • 单选题
    已知函数y=f(x)的定义域为(-∞,-3)∪(3,+∞),且满足条件:4x2-9y2=36,其中xy<0.若y=f(x)的反函数y=g(x)的图象上任意一点的切线的斜率为k,则k的取值范围是
    [     ]

    A.(-∞,-3)∪(3,+∞)
    B.
    C.
    D.
    本题信息:2011年河北省期末题数学单选题难度一般 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知函数y=f(x)的定义域为(-∞,-3)∪(3,+∞),且满足条件:4x2-9y2=36,其中xy<0.若y=f(x)的反函数y=g(x)的图象上任意一点的切线的斜率为k,则k的取值范围是...” 主要考查您对

反函数

导数的概念及其几何意义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 反函数
  • 导数的概念及其几何意义

定义

设式子y=f(x)表示y是x的函数,定义域为A,值域为C,从式子y=f(x)中解出x,得到式子x=(y),如果对于y在C中的任何一个值,通过式子x=(y),x在A中都有唯一确定的值和它对应,那么式子x=(y)就表示y是x的函数,这样的函数叫做y=f(x)的反函数,记作x=f-1(y),即x=(y)=f-1(y),一般对调x=f-1(y)中的字母x,y,把它改写成y=f-1(x)。


反函数的一些性质

(1)反函数的定义域和值域分别是原函数的值域和定义域,称为互调性;
(2)定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数;
(3)函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称,但要注意:函数y=f(x)的图象与其反函数x=(y)=f-1(y)的图象相同。(对称性)
(4)设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。
(5)函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x )的反函数是y=f(x),称为互反性,但要特别注意
(6)函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上,
互为反函数且有一个交点是,它不再直线y=x上。
(7)还原性:


求反函数的步骤:

(1)将y=f(x)看成方程,解出x=f-1(y);
(2)将x,y互换得y =f-1(x);
(3)写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定);
另外:分段函数的反函数可以分别求出各段函数的反函数再合成。


平均变化率:

一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率
  
上式中的值可正可负,但不为0.f(x)为常数函数时, 

瞬时速度:
如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即
若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.

函数y=f(x)在x=x0处的导数的定义

一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作,即

导函数:

如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=

切线及导数的几何意义:

(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P处的切线。
(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=


瞬时速度特别提醒:

①瞬时速度实质是平均速度当时的极限值.
②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,

 函数y=f(x)在x=x0处的导数特别提醒:

①当时,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.
②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.
③在点x=x0处的导数的定义可变形为:
    

导函数的特点:

①导数的定义可变形为:
②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,
③可导的周期函数其导函数仍为周期函数,
④并不是所有函数都有导函数.
⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.
⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).

导数的几何意义(即切线的斜率与方程)特别提醒

①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0 =f′(x0)(x- x0).
②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.
③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,
④显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<o,切线与x轴正向的夹角为钝角;f(x0) =0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.