返回

高中数学

首页
  • 解答题
    定义在[-1,1]上的奇函数f(x)满足f(1)=1,且当a、b∈[-1,1],a+b≠0时,有
    f(a)+f(b)
    a+b
    >0

    (1)证明:f(x)是[-1,1]上的增函数;
    (2)若f(x)≤m2+2am+1对所有的x∈[-1,1],a∈[-1,1]恒成立,求m的取值范围.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “定义在[-1,1]上的奇函数f(x)满足f(1)=1,且当a、b∈[-1,1],a+b≠0时,有f(a)+f(b)a+b>0.(1)证明:f(x)是[-1,1]上的增函数;(2)若f(x)≤m2+2am...” 主要考查您对

集合间的基本关系

函数的单调性、最值

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 集合间的基本关系
  • 函数的单调性、最值

集合与集合的关系有“包含”与“不包含”,“相等”三种:

 1、 子集概念:
一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含A,记作AB(或说A包含于B),
也可记为BA(B包含A),此时说A是B的子集;A不是B的子集,记作AB,读作A不包含于B

2、集合相等:
对于集合A和B,如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就说集合A和集合B相等,记作A=B

3、真子集:
对于集合A与B,如果AB并且A≠B,则集合A是集合B的真子集,记作AB(BA),读作A真包含于B(B真包含A) 


集合间基本关系:

性质1:

(1)空集是任何集合的子集,即A;

(2)空集是任何非空集合的真子集;

(3)传递性:AB,BCAC;AB,BCAC;

(4)AB,BAA=B。

性质2:

 子集个数的运算:含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。


集合间基本关系性质:

(1)空集是任何集合的子集,即A;
(2)空集是任何非空集合的真子集;
(3)传递性: 
(4)集合相等: 
(5)含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。


单调性的定义:

1、对于给定区间D上的函数f(x),若对于任意x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则称f(x)是区间上的增函数;当x1<x2时,都有f(x1)>f(x2),则称f(x)是区间D上的减函数。

2、如果函数y=f(x)在区间上是增函数或减函数,就说函数y=f(x)在区间D上具有(严格的)单调性,区间D称为函数f(x)的单调区间。如果函数y=f(x)在区间D上是增函数或减函数,区间D称为函数f(x)的单调增或减区间 
 
3、最值的定义:
最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最大值.
最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M,满足: ①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M;那么,称M是f(x)的最小值


判断函数f(x)在区间D上的单调性的方法

(1)定义法:其步骤是:
①任取x1,x2∈D,且x1<x2;
②作差f(x1)-f(x2)或作商 ,并变形;
③判定f(x1)-f(x2)的符号,或比较 与1的大小;
④根据定义作出结论。
(2)复合法:利用基本函数的单调性的复合。
(3)图象法:即观察函数在区间D上部分的图象从左往右看是上升的还是下降的。