返回

高中三年级数学

首页
  • 解答题
    设椭圆C1=1(a>b>0)的左、右焦点分别为为恰是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
    (1)求C1的方程;
    (2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “设椭圆C1:=1(a>b>0)的左、右焦点分别为为,恰是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.(1)求C1的方程;(2)平面上的点N满足,...” 主要考查您对

椭圆的定义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 椭圆的定义

椭圆的第一定义:

平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。

椭圆的第二定义:

平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。


椭圆的定义应该包含几个要素:

 
利用椭圆的定义解题:
 
当题目中出现一点在椭圆上的条件时,注意使用定义

发现相似题
与“设椭圆C1:=1(a>b>0)的左、右焦点分别为为,恰是抛物线C2...”考查相似的试题有: