返回

高中三年级数学

首页
  • 解答题
    设集合A={x|x2<4},
    (1)求集合AB;
    (2)若不等式2x2+ax+b<0的解集为B,求a,b的值.
    本题信息:2012年湖南省月考题数学解答题难度较难 来源:刘建昰
  • 本题答案
    查看答案
本试题 “设集合A={x|x2<4},.(1)求集合AB;(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.” 主要考查您对

集合间交、并、补的运算(用Venn图表示)

一元二次方程及其应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 集合间交、并、补的运算(用Venn图表示)
  • 一元二次方程及其应用

1、交集概念:

(1)一般地,由所有属于集合A且集合B的元素所组成的集合,叫做A与B的交集,记作A∩B,读作A交B,表达式为A∩B={x|x∈A且x∈B}。
(2)韦恩图表示为


2、并集概念:


(1)一般地,由所有属于集合A或集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,读作A并B,表达式为A∪B={x|x∈A或x∈B}。
(2)韦恩图表示为


3、全集、补集概念:


(1)全集:一般地,如果一个集合含有我们所要研究的各个集合的全部元素,就称这个集合为全集,通常记作U。
        补集:对于一个集合A,由全集U中所有不属于A的元素组成的集合称为集合A相对于全集U的补集,记作CUA,读作U中A的补集,表达式为CUA={x|x∈U,且xA}。
(2)韦恩图表示为


1、交集的性质:

 

2、并集的性质:

 

3、补集的性质:

 


一元二次方程的定义:

含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一元二次方程的一般形式:



一元二次方程的应用:

建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

一元二次方程的根与系数的关系:

如果方程的两个实数根是,那么