返回

高中三年级数学

首页
  • 解答题
    已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2
    (1)求双曲线C的方程;
    (2)若直线l:y=kx+与双曲线C左支交于A、B两点,求k的取值范围;
    (3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围。
    本题信息:2011年同步题数学解答题难度极难 来源:刘佩
  • 本题答案
    查看答案
本试题 “已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2。(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线C左支交于A、B两点,求k的取值范围;(3)在(2...” 主要考查您对

线段的定比分点

直线的倾斜角与斜率

双曲线的标准方程及图象

直线与双曲线的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 线段的定比分点
  • 直线的倾斜角与斜率
  • 双曲线的标准方程及图象
  • 直线与双曲线的应用

线段的定比分点定义:

设点P是直线P1P2上异于P1、P2的任意一点,若存在一个实数λ,使P1P=λPP2,λ叫做点P分有向线段所成的比,P点叫做有向线段 的以定比为λ的定比分点。
当P点在线段 P1P2上时,λ>0;当P点在线段 P1P2的延长线上时,λ<-1;当P点在线段P2P1的延长线上时 -1<λ<0。
若点P分有向线段所成的比为λ,则点P分有向线段所成的比为

有向线段的定比分点的坐标公式:

(1)设
在使用定比分点的坐标公式时,应明确(x,y),(x1,y1),(x2,y2)的意义,即分别为分点,起点,终点的坐标。一般在计算中应根据题设,自行确定起点,分点和终点并根据这些点确定对应的定比λ。
(2)当λ=1时,就得到P1P2的中点公式:
(3)三角形ABC的重心公式:设,则重心


直线的倾斜角的定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°。

直线的斜率的定义:

倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率。直线的斜率常用k表示。即k=tanα。斜率反映直线与x轴的倾斜程度。


直线斜率的性质:

时,k≥0;当时,k<0;当时,k不存在。


直线倾斜角的理解:

(1)注意“两个方向”:直线向上的方向、x轴的正方向;

(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

直线倾斜角的意义:

①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。

直线斜率的理解:

每条直线都有倾斜角,但每条直线不一定都有斜率, 斜率不存在;当 也逐渐增大; 且逐渐增大。


双曲线的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
双曲线的图像:

(1)焦点在x轴上的双曲线的图像

(2)焦点在y轴上的双曲线的图像


判断双曲线的焦点在哪个轴上:

判断双曲线的焦点在哪个轴上的方法看未知数前的系数,哪一个为正,焦点就在哪一个轴上.

定义法求双曲线的标准方程:

求动点的轨迹方程时,可利用定义先判断动点的轨迹,再写出方程.平面几何中的定理性质在解决解析几何问题时起着简化运算的作用,一定要注意应用,根据双曲线的定义,到两个定点的距离之差的绝对值是一个常数的点的轨迹是双曲线,可以求双曲线的标准方程,

待定系数法求双曲线的标准方程:

在求双曲线标准方程时,可先设出其标准方程,再根据双曲线的参数a,b,c,e的取值及相互之间的关系,求出a,b的值,已知双曲线的渐近线方程,求双曲线方程时,可利用共渐近线双曲线系方程,再由其他条件求λ.若焦点不确定时,要注意分类讨论.

利用双曲线的性质求解有关问题:

要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出离心率的关系式,这里应和椭圆中a,b,c的关系区分好,即


几种特殊的双曲线:

等轴双曲线 实轴和虚轴相等的双曲线叫做等轴双曲线.离心率两条渐近线互相垂直
共轭双曲线
共渐近线的双曲线

直线与双曲线:

设直线l的方程为:Ax+By+C=0(A、B不同时为零),双曲线的方程:,将直线的方程代入双曲线的方程,消去y(或x)得到一元二次方程,进而应用根与系数的关系解题。


双曲线的综合问题:

双曲线知识通常与圆、椭圆、抛物线或数列、向量及不等式、三角函数相联系,综合考查数学知识及应用是高考的重点,应用中应注意对知识的综合及分析能力,双曲线的标准方程和几何性质中涉及很多基本量,如“a,b,c,e"树立基本量思想对于确定双曲线方程和认识其几何性质有很大帮助.另外,渐近线是双曲线特有的,双曲线的渐近线方程可记为

为渐近线的双曲线方程可设为.特别地,等轴双曲线方程可设为
的垂直关系的证明可以通过来证明,也可以通过来证明,它体现了证明解析几何问题方法的多样性.

发现相似题
与“已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2。(1...”考查相似的试题有: