本试题 “点P是曲线x2-y-2lnx=0上任意一点,则点P到直线4x+4y+1=0的最小距离是( )A.22(1-ln2)B.22(1+ln2)C.22(12+ln2)D.12(1+ln2)” 主要考查您对导数的运算
两直线平行、垂直的判定与性质
两条平行直线间的距离
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
常见函数的导数:
(1)C′=0 ;(2);(3);(4);(5);(6);(7);(8)
导数的四则运算:
(1)和差:
(2)积:
(3)商:
复合函数的导数:
运算法则复合函数导数的运算法则为:
复合函数的求导的方法和步骤:
(1)分清复合函数的复合关系,选好中间变量;
(2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数;
(3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数。
求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。
两直线平行、垂直的判定的文字表述:
平行判断的文字表述:如果两条不重合的直线(存在斜率)平行,则它们的斜率相等;反之,如果两条不重合直线的斜率相等,则它们平行;
垂直判断的文字表述:如果两条直线都有斜率,且它们互相垂直,那么它们斜率之积为-1;反之,如果两条直线的斜率之积为-1,那么它们互相垂直
两直线平行、垂直的判定的符号表示:
1、若,
(1);
(2)。
2、若,,且A1、A2、B1、B2都不为零,
(1);
(2)。
两直线平行的判断的理解:
成立的前提条件是两条直线的斜率存在,分别为
当两条直线不重合且斜率均不存在时,
两直线垂直的判断的理解:
成立的前提条件是斜率都存在且不等于零.
②两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直,这样,两条直线垂直的判定就可叙述为:一般地,,或一条直线的斜率不存在,同时另一条直线的斜率等于零。
求与已知直线垂直的直线方程的方法:
两条平行直线间的距离:
两平行线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0间的距离为d=。
对两条平行直线间的距离公式的理解:
①两条平行直线间的距离,就是在其中一条直线上任取一点,这个点到另一条直线的距离,此点一般可以取直线上的特殊点,该方法体现了化归思想,即由线线间的距离到点线间的距离的转化,当然点线间的距离也可以化归为点点间的距离来求解;
②当利用两条平行直线间的距离公式d=时,一定要先将两直线的方程化为一般形式且x和y的系数对应相等;
③如果两平行直线的方程用斜截式方程表示为那么两平行直线间的距离公式为
与“点P是曲线x2-y-2lnx=0上任意一点,则点P到直线4x+4y+1=0的最...”考查相似的试题有: