返回

高中数学

首页
  • 解答题
    已知椭圆
    y2
    a2
    +
    x2
    b2
    =1 (a>b>0)
    的离心率e满足3, 
    1
    e
    , 
    4
    9
    成等比数列,且椭圆上的点到焦点的最短距离为2-
    3
    .过点(2,0)作直线l交椭圆于点A,B.
    (1)若AB的中点C在y=4x(x≠0)上,求直线l的方程;
    (2)设椭圆中心为,问是否存在直线l,使得的面积满足2S△AOB=|OA|•|OB|?若存在,求出直线AB的方程;若不存在,说明理由.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知椭圆y2a2+x2b2=1 (a>b>0)的离心率e满足3, 1e, 49成等比数列,且椭圆上的点到焦点的最短距离为2-3.过点(2,0)作直线l交椭圆于点A,B.(1)若AB的...” 主要考查您对

等比数列的定义及性质

椭圆的标准方程及图象

椭圆的性质(顶点、范围、对称性、离心率)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等比数列的定义及性质
  • 椭圆的标准方程及图象
  • 椭圆的性质(顶点、范围、对称性、离心率)

等比数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。


等比数列的性质:

在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2
(2)若m,n∈N*,则am=anqm-n
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。


等差数列和等比数列的比较:
 

如何证明一个数列是等比数列:

证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。


椭圆的标准方程:

(1)中心在原点,焦点在x轴上:
(2)中心在原点,焦点在y轴上:
椭圆的图像:

(1)焦点在x轴:

(2)焦点在y轴:


巧记椭圆标准方程的形式:

①椭圆标准方程的形式:左边是两个分式的平方和,右边是1;
②椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上;
③椭圆的标准方程中,三个参数a,b,c满足a2= b2+ c2
④由椭圆的标准方程可以求出三个参数a,b,c的值.

待定系数法求椭圆的标准方程:

求椭圆的标准方程常用待定系数法,要恰当地选择方程的形式,如果不能确定焦点的位置,那么有两种方法来解决问题:一是分类讨论,全面考虑问题;二是可把椭圆的方程设为n)用待定系数法求出m,n的值,从而求出标准方程,


 椭圆的离心率:

椭圆的焦距与长轴长之比叫做椭圆的离心率。


椭圆的性质:

1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:
5、离心率: 
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。


利用椭圆的几何性质解题:

利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。

椭圆中求最值的方法:

求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.

椭圆中离心率的求法:

在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,从而求离心率或离心率的取值范围.