本试题 “已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦点,双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点(1)求这两条曲线的方程;(2)直线l过轴上...” 主要考查您对双曲线的标准方程及图象
抛物线的标准方程及图象
直线与抛物线的应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
双曲线的标准方程:
(1)中心在原点,焦点在x轴上:;
(2)中心在原点,焦点在y轴上:。
双曲线的图像:
(1)焦点在x轴上的双曲线的图像
;
(2)焦点在y轴上的双曲线的图像
。
判断双曲线的焦点在哪个轴上:
判断双曲线的焦点在哪个轴上的方法看未知数前的系数,哪一个为正,焦点就在哪一个轴上.
定义法求双曲线的标准方程:
求动点的轨迹方程时,可利用定义先判断动点的轨迹,再写出方程.平面几何中的定理性质在解决解析几何问题时起着简化运算的作用,一定要注意应用,根据双曲线的定义,到两个定点的距离之差的绝对值是一个常数的点的轨迹是双曲线,可以求双曲线的标准方程,
待定系数法求双曲线的标准方程:
在求双曲线标准方程时,可先设出其标准方程,再根据双曲线的参数a,b,c,e的取值及相互之间的关系,求出a,b的值,已知双曲线的渐近线方程,求双曲线方程时,可利用共渐近线双曲线系方程,再由其他条件求λ.若焦点不确定时,要注意分类讨论.
利用双曲线的性质求解有关问题:
要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出离心率的关系式,这里应和椭圆中a,b,c的关系区分好,即
几种特殊的双曲线:
等轴双曲线 | 实轴和虚轴相等的双曲线叫做等轴双曲线.离心率两条渐近线互相垂直 |
共轭双曲线 |
|
共渐近线的双曲线 |
|
抛物线的标准方程及图像(见下表):
抛物线的标准方程的理解:
①抛物线的标准方程是指抛物线在标准状态下的方程,即顶点在原点,焦点在坐标轴上;
②抛物线的标准方程中的系数p叫做焦参数,它的几何意义是:焦点到准线的距离.焦点到顶点以及顶点到准线的距离均为
③抛物线的标准方程有四种类型,所以判断其类型是解题的关键,在方程的类型已确定的前提下,由于标准方程只有一个参数p,所以只需一个条件就可以确定一个抛物线的方程;
④对以上四种位置不同的抛物线和它们的标准方程进行对比、分析,得出其异同点。
共同点:
a.原点在抛物线上;
b.焦点都在坐标轴上;
c.准线与焦点所在轴垂直,垂足与焦点分别关于原点对称,它们与原点的距离都等于一次项系数的绝对值的
不同点:
a.焦点在x轴上时,方程的右侧为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2;
b.开口方向与x轴(或y轴)的正半轴相同,焦点在x轴(或y轴)的正半轴上,方程右端取正号;开口方向与x轴(或y轴)的负半轴相同,焦点在x轴(或y轴)的负半轴上,方程的右端取负号.
求抛物线的标准方程的常用方法:
(1)定义法求抛物线的标准方程:定义法求曲线方程是经常用的一种方法,关键是理解定义的实质及注意条件,将所给条件转化为定义的条件,当然还应注意特殊情况.
(2)待定系数法求抛物线的标准方程:求抛物线标准方程常用的方法是待定系数法,为避免开口不确定,分成(p>0)两种情况求解的麻烦,可以设成(m,n≠0),若m、n>0,开口向右或向上;m、n<0,开口向左或向下;m、n有两解,则抛物线的标准方程各有两个。
设直线l的方程为:Ax+By+C=0(A、B不同时为零),抛物线的方程为y2=2px(p>0),将直线的方程代入抛物线的方程,消去y(或x) 得到一元二次方程,进而应用根与系数的关系解题。
直线与抛物线的位置关系:
直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,如:
与“已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦...”考查相似的试题有: