返回

高中三年级数学

首页
  • 解答题
    若函数h(x)满足
    ①h(0)=1,h(1)=0;
    ②对任意a∈[0,1],有h(h(a))=a;
    ③在(0,1)上单调递减.则称h(x)为补函数。
    已知函数h(x)=(λ>-1,p>0)。
    (1)判函数h(x)是否为补函数,并证明你的结论;
    (2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p=(n∈N+)时h(x)的中介元为xn,且Sn=,若对任意的n∈N+,都有Sn,求λ的取值范围;
    (3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1-x的上方,求P的取值范围。
    本题信息:2012年高考真题数学解答题难度极难 来源:刘佩
  • 本题答案
    查看答案
本试题 “若函数h(x)满足①h(0)=1,h(1)=0;②对任意a∈[0,1],有h(h(a))=a;③在(0,1)上单调递减.则称h(x)为补函数。已知函数h(x)=(λ>-1,p>0)。...” 主要考查您对

函数的单调性与导数的关系

数列的极限

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性与导数的关系
  • 数列的极限

导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。 


数列的极限定义(描述性的):

如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即无限地接近于0),a叫数列的极限,记作,也可记做当n→+∞时,an→a。

数列的极限严格定义

即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足,a叫数列的极限。

数列极限的四则运算法则:

,则
(1)
(2)
(3)
前提条件:(1)各数列均有极限,(2)相加减时必须是有限个数列才能用法则。


an无限接近于a的方式有三种:

第一种是递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a,如n→+∞时,
第二种是递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a,如n→+∞时,是
第三种是摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a,如n→+∞时,


一些常用数列的极限:

(1)常数列A,A,A,…的极限是A;
(2)当时,
(3)当|q|<1时,;当q>1时,不存在;
(4)不存在,
(5)无穷等比数列{an}中,首项a1,公比q,前n项和Sn,各项之和S,则(只有在0<|q|<1时)。