本试题 “如图,在正三棱柱ABC-A1B1C1中,BC=BB1,点D是BC的中点.(I)求证:A1C1∥平面AB1C;(Ⅱ)求证:△AB1D为直角三角形;(Ⅲ)若三棱锥B1-ACD的体积为33,求棱BB1...” 主要考查您对直线与平面平行的判定与性质
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
线面平行的定义:
若直线和平面无公共点,则称直线和平面平行。
线面平行的判定定理:
平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行
符号语言:
线面平行的性质定理:
如果一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 线面平行线线平行
符号语言:
证明直线与平面平行的常用方法:
(l)反证法,即
(2)判定定理法,即
(3)面面平行的性质定理,即
(4)向量法,平面外的直线的方向向量n与平面的法向量n垂直,则直线与平面平行,即
与“如图,在正三棱柱ABC-A1B1C1中,BC=BB1,点D是BC的中点.(I...”考查相似的试题有: