返回

高中数学

首页
  • 解答题
    已知:A={x|a≤x≤a+3},B={x|x<-1或x>5}
    (1)若A∩B=∅,求实数a的取值范围.
    (2)若A∪B=B,求实数a的取值范围.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知:A={x|a≤x≤a+3},B={x|x<-1或x>5}(1)若A∩B=∅,求实数a的取值范围.(2)若A∪B=B,求实数a的取值范围.” 主要考查您对

集合间的基本关系

集合间交、并、补的运算(用Venn图表示)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 集合间的基本关系
  • 集合间交、并、补的运算(用Venn图表示)

集合与集合的关系有“包含”与“不包含”,“相等”三种:

 1、 子集概念:
一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含A,记作AB(或说A包含于B),
也可记为BA(B包含A),此时说A是B的子集;A不是B的子集,记作AB,读作A不包含于B

2、集合相等:
对于集合A和B,如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就说集合A和集合B相等,记作A=B

3、真子集:
对于集合A与B,如果AB并且A≠B,则集合A是集合B的真子集,记作AB(BA),读作A真包含于B(B真包含A) 


集合间基本关系:

性质1:

(1)空集是任何集合的子集,即A;

(2)空集是任何非空集合的真子集;

(3)传递性:AB,BCAC;AB,BCAC;

(4)AB,BAA=B。

性质2:

 子集个数的运算:含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。


集合间基本关系性质:

(1)空集是任何集合的子集,即A;
(2)空集是任何非空集合的真子集;
(3)传递性: 
(4)集合相等: 
(5)含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。


1、交集概念:

(1)一般地,由所有属于集合A且集合B的元素所组成的集合,叫做A与B的交集,记作A∩B,读作A交B,表达式为A∩B={x|x∈A且x∈B}。
(2)韦恩图表示为


2、并集概念:


(1)一般地,由所有属于集合A或集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,读作A并B,表达式为A∪B={x|x∈A或x∈B}。
(2)韦恩图表示为


3、全集、补集概念:


(1)全集:一般地,如果一个集合含有我们所要研究的各个集合的全部元素,就称这个集合为全集,通常记作U。
        补集:对于一个集合A,由全集U中所有不属于A的元素组成的集合称为集合A相对于全集U的补集,记作CUA,读作U中A的补集,表达式为CUA={x|x∈U,且xA}。
(2)韦恩图表示为


1、交集的性质:

 

2、并集的性质:

 

3、补集的性质: