返回

小学六年级数学

首页
  • 判断题
    数学门诊部。(对的打“√”,错的打“×”)
    (1)比的前项一定,比的后项和比值成反比例。
    [     ]

    (2)比例尺一定,图上距离和实际距离成正比例。
    [     ]

    (3)当a=3时,a=3a。
    [     ]

    (4)比的前项和后项同时乘同一个数,比值不变。
    [     ]

    (5)小明的年龄和爸爸的年龄成正比例。
    [     ]

    (6)圆的半径与圆的面积成正比例。
    [     ]

    (7)如果x=,那么x与y成反比例。
    [     ]

    (8)如果a与b成正比例,那么b与a成反比例。
    [     ]

    本题信息:2009年陕西省同步题数学判断题难度一般 来源:张思媛
  • 本题答案
    查看答案
本试题 “数学门诊部。(对的打“√”,错的打“×”)(1)比的前项一定,比的后项和比值成反比例。[ ](2)比例尺一定,图上距离和实际距离成正比例。[ ](3)当a=3时,a3 ...” 主要考查您对

用字母表示数

比的基本性质

正比例的意义,反比例的意义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 用字母表示数
  • 比的基本性质
  • 正比例的意义,反比例的意义
用字母表示数:
含有字母的式子不仅可以表示数量关系,也可以表示数量。还可以简明、概括地表达运算定律和计算公式,方便研究和解决实际问题。
①含有字母的式子中,数字和字母、字母和字母相乘时,乘号可以记作“·”,也可以省略不写。
②在省略乘号的时候,应当把数字写在字母的前面。
③当“1”和任何字母相乘时,“1”可以省略不写。
④由于字母可以表示任何数,在一些式中,对字母表示数的要运行说明,如: (a≠0)。
⑤因为字母表示的是数,所以在式子中每一个字母都不注明单位名称,计算结果也不注明单位名称,只在答句中写上单位名称。

用字母表示数的意义:

有助于揭示概念的本质特征,能使数量之间的关系更加简明,更具有普遍意义。使思维过程简约化,易于形成概念系统。
比的基本性质:
1.比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变。
2.最简比的前项和后项互为质数,且比的前项、后项都为整数。
3.比值通常用比表示,也可以用分数(分数比)或小数表示。
4.比的后项不能为0 。
5.比的前项除以后项等于比值。

正比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像是一条直线;
用字母表示为如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:=k(一定);
正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.正比例和反比例

反比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系;
如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:xy=k(一定)。


反比例的意义:
成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
成反比例的量:
前提:两种相关的量(乘法关系)
要求:一个量变化,另一个量也随着变化,并且,这两个量中相对应的两个数的乘积一定。
结论:这两个量就叫做反比例的量,它们的关系叫做反比例关系。

正比例和反比例关系:
相同点:
①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
不同点:
①正比例的定量是两个变量中相对应的两个数的比值。反比例的定量是两个变量中相对应的两个数的积。
②正比例的图像时上升直线;反比例是曲线。
③公式不同:正比例是(=k(一定)),反比例是(xy=k(一定))。
④规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。 


判断两种量成正比例、反比例或不成比例的方法:
(1)找出两种相关联的量。
(2)根据两种相关联的量之间的关系列出数量关系式。
(3)如果两种量中相对应的两个数的比值(也就是商)一定,就是成正比例的量;若积一定,就是反比例的量。