返回

高中数学

首页
  • 解答题
    已知向量
    m
    =(1,1)
    ,向量
    n
    与向量
    m
    夹角为
    3
    4
    π
    ,且
    m
    n
    =-1
    ,又A、B、C为△ABC的三个内角,且B=
    π
    3
    ,A≤B≤C.
    (Ⅰ)求向量
    n

    (Ⅱ)若向量
    n
    与向量
    q
    =(1,0)
    的夹角为
    π
    2
    ,向量
    p
    =(cosA,2cos2
    C
    2
    )
    ,试求|
    n
    +
    p
    |
    的取值范围.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知向量m=(1,1),向量n与向量m夹角为34π,且m•n=-1,又A、B、C为△ABC的三个内角,且B=π3,A≤B≤C.(Ⅰ)求向量n;(Ⅱ)若向量n与向量q=(1,0)的夹角为π2,向...” 主要考查您对

两角和与差的三角函数及三角恒等变换

向量数量积的运算

向量模的计算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 两角和与差的三角函数及三角恒等变换
  • 向量数量积的运算
  • 向量模的计算

两角和与差的公式:






倍角公式:



半角公式:


万能公式:

三角函数的积化和差与和差化积:








三角恒等变换:

寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。


三角函数式化简要遵循的"三看"原则:

(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.

方法提炼:

(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.


两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。


数量积的的运算律:

已知向量和实数λ,下面(1)(2)(3)分别叫做交换律,数乘结合律,分配律。
(1)
(2)
(3)


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,


向量的模

,则有向线段的长度叫做向量的长度或模,记作:,则 

 向量模的坐标表示:

(1)若,则
(2)若,那么


求向量的模:

求向量的模主要是利用公式来解。