返回

高中数学

首页
  • 解答题
    已知向量
    a
    =(
    2
    cos(α+β),
    2
    sin(α+β))
    b
    =(-sinβ,cosβ)
    ,若向量
    a
    b
    的夹角为
    6
    ,且α∈(
    2
    ,2π)
    ,求cos(2α+
    π
    4
    )
    的值.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知向量a=(2cos(α+β),2sin(α+β)),b=(-sinβ,cosβ),若向量a与b的夹角为5π6,且α∈(3π2,2π),求cos(2α+π4)的值.” 主要考查您对

两角和与差的三角函数及三角恒等变换

用数量积表示两个向量的夹角

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 两角和与差的三角函数及三角恒等变换
  • 用数量积表示两个向量的夹角

两角和与差的公式:






倍角公式:



半角公式:


万能公式:

三角函数的积化和差与和差化积:








三角恒等变换:

寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的特点。


三角函数式化简要遵循的"三看"原则:

(1)一看"角".这是最重要的一点,通过角之间的关系,把角进行合理拆分与拼凑,从而正确使用公式.
(2)二看"函数名称".看函数名称之间的差异,从而确定使用的公式.
(3)三看"结构特征".分析结构特征,可以帮助我们找到变形得方向,常见的有"遇到分式要通分"等.

方法提炼:

(1)解决给值求值问题的一般思路:
①先化简需求值得式子;②观察已知条件与所求值的式子之间的联系(从三角函数名及角入手);③将已知条件代入所求式子,化简求值.
(2)解决给值求角问题的一般步骤:
①求出角的某一个三角函数值;②确定角的范围;③根据角的范围确定所求的角.


用数量积表示两个向量的夹角:

都是非零向量,,θ是的夹角,根据向量数量积的定义及坐标表示可得


向量数量积问题中方法提炼:

(1)平面向量的数量积的运算有两种形式,一是依据定义来计算,二是利用坐标来计算,具体应用哪种形式应根据已知条件的特征来选择;
(2)平面向量数量积的计算类似于多项式的运算,解题中要注意多项式运算方法的运用;
(3)平面向量数量积的计算中要注意平面向量基本定理的应用,选择合适的基底,以简化运算
(4)向量的数量积是一个数而不是一个向量。