返回

高中一年级数学

首页
  • 解答题
    已知方程x2+y2-2x-4y+m=0。
    (Ⅰ)若此方程表示圆,求m的取值范围;
    (Ⅱ)若(Ⅰ)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;
    (Ⅲ)在(Ⅱ)的条件下,求以MN为直径的圆的方程。
    本题信息:2011年同步题数学解答题难度较难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知方程x2+y2-2x-4y+m=0。(Ⅰ)若此方程表示圆,求m的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;(Ⅲ)...” 主要考查您对

两直线平行、垂直的判定与性质

圆的标准方程与一般方程

直线与圆的位置关系

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 两直线平行、垂直的判定与性质
  • 圆的标准方程与一般方程
  • 直线与圆的位置关系

两直线平行、垂直的判定的文字表述:

平行判断的文字表述:如果两条不重合的直线(存在斜率)平行,则它们的斜率相等;反之,如果两条不重合直线的斜率相等,则它们平行;
垂直判断的文字表述:如果两条直线都有斜率,且它们互相垂直,那么它们斜率之积为-1;反之,如果两条直线的斜率之积为-1,那么它们互相垂直

两直线平行、垂直的判定的符号表示:

1、若
(1)
(2)
2、若,且A1、A2、B1、B2都不为零,
(1)
(2)


两直线平行的判断的理解:

成立的前提条件是两条直线的斜率存在,分别为 
当两条直线不重合且斜率均不存在时,

两直线垂直的判断的理解:

 成立的前提条件是斜率都存在且不等于零.
 ②两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直,这样,两条直线垂直的判定就可叙述为:一般地,,或一条直线的斜率不存在,同时另一条直线的斜率等于零。

求与已知直线垂直的直线方程的方法:

(1)垂直的直线方程可设为垂直的直线方程可设为
 
 (2)利用互相垂直的直线之间的关系求出斜率,再用点斜式写出直线方程。
 
求与已知直线平行的直线方程的方法:
 
(1)一般地,直线决定直线的斜率,因此,与直线
平行的直线方程可设为,这是常常采用的解题技巧。
重合。
(2)一般地,经过点
(3)利用平行直线斜率相等,求出斜率,再用点斜式求出直线方程.
 

圆的定义:

平面内与一定点的距离等于定长的点的集合是圆。定点就是圆心,定长就是半径。

圆的标准方程:

圆的标准方程,圆心(a,b),半径为r;特别当圆心是(0,0),半径为r时,圆的标准方程为

圆的一般方程:

圆的一般方程
>0时,表示圆心在,半径为的圆;
=0时,表示点
<0时,不表示任何图形。


圆的定义的理解:

(1)定位条件:圆心;定形条件:半径。
(2)当圆心位置与半径大小确定后,圆就唯一确定了.因此一个圆最基本的要素是圆心和半径.

圆的方程的理解:

(1)圆的标准方程中含有a,b,r三个独立的系数,因此,确定一个圆需三个独立的条件.其中圆心是圆的定位条件,半径是圆的定形条件.
(2)圆的标准方程的优点在于明确显示了圆心和半径.
(3)圆的一般方程形式的特点:
a.的系数相同且不等于零;
b.不含xy项.
(4)形如的方程表示圆的条件:
a.A=C≠0;
b.B=0;
c.


几种特殊位置的圆的方程:

条件 标准方程 一般方程
圆心在原点
过原点
圆心在x轴上
圆心在y轴上
与x轴相切
与y轴相切
与x,y轴都相切
圆心在x轴上且过原点
圆心在y轴上且过原点

直线与圆的位置关系

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
其图像如下:


直线和圆的位置关系的性质:

(1)直线l和⊙O相交d<r
(2)直线l和⊙O相切d=r;
(3)直线l和⊙O相离d>r。


直线与圆位置关系的判定方法:

(1)代数法:判断直线Ax+By+C=0和圆x2+y2+Dx+Ey+F=0的位置关系,可由
 
推出mx2+nx+p=0,利用判别式△进行判断.
△>0则直线与圆相交;
△=0则直线与圆相切;
△<0则直线与圆相离.
(2)几何法:已知直线Ax+By+C=0和圆,圆心到直线的距离
d<r则直线和圆相交;
d=r则直线和圆相切;
d>r则直线和圆相离.
特别提醒:
(1)上述两种方法,以利用圆心到直线的距离进行判定较为简捷,而判别式法也适用于直线与椭圆、双曲线、抛物线位置关系的判断.
(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.

直线与圆位置关系的判定方法列表如下:

直线与圆相交的弦长公式:

(1)几何法:如图所示,直线l与圆C相交于A、B两点,线段AB的长即为l与圆相交的弦长。
设弦心距为d,半径为r,弦为AB,则有|AB|=

(2)代数法:直线l与圆交于直线l的斜率为k,则有
当直线AB的倾斜角为直角,即斜率不存在时,|AB|=


发现相似题
与“已知方程x2+y2-2x-4y+m=0。(Ⅰ)若此方程表示圆,求m的取值范...”考查相似的试题有: