本试题 “在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点。(1)如果直线l过抛物线的焦点,求的值;(2)如果=-4,证明直线l必过一定点,并求出该定点。” 主要考查您对用坐标表示向量的数量积
直线与抛物线的应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
两个向量的数量积的坐标运算:
非零向量,那么,即两个向量的数量积等于它们对应坐标的乘积。
向量的数量积的推广1:
设a=(x,y),则|a|=x2+y2 ,或|a|=
向量的数量积的推广2:
设直线l的方程为:Ax+By+C=0(A、B不同时为零),抛物线的方程为y2=2px(p>0),将直线的方程代入抛物线的方程,消去y(或x) 得到一元二次方程,进而应用根与系数的关系解题。
直线与抛物线的位置关系:
直线和抛物线的位置关系,可通过直线方程与抛物线方程组成的方程组的实数解的个数来确定,同时注意过焦点的弦的一些性质,如:
与“在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B...”考查相似的试题有: