本试题 “已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),若a+b+c=0,f(0)f(1)>0,设x1,x2是方程f(x)=0的两个根,则|x1﹣x2|的取值范围为[ ]A.B.C.D.” 主要考查您对导数的运算
一元二次方程及其应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
常见函数的导数:
(1)C′=0 ;(2);(3);(4);(5);(6);(7);(8)
导数的四则运算:
(1)和差:
(2)积:
(3)商:
复合函数的导数:
运算法则复合函数导数的运算法则为:
复合函数的求导的方法和步骤:
(1)分清复合函数的复合关系,选好中间变量;
(2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数;
(3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数。
求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。
一元二次方程的定义:
含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:
。
一元二次方程的应用:
建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。
一元二次方程的根与系数的关系:
如果方程的两个实数根是,那么。
与“已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),若a+b...”考查相似的试题有: