本试题 “命题:①与三角形两边平行的平面平行于这个三角形的第三边;②与三角形两边垂直的直线垂直于第三边;③与三角形三个顶点等距离的平面平行于这个三角形所在的平面...” 主要考查您对真命题、假命题
平面与平面平行的判定与性质
直线与平面垂直的判定与性质
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
命题的概念:
1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。
注意:
1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。
2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。
面面平行的定义:
如果两个平面无公共点,则称这两个平面平行。
图形表示:
面面平行的判定定理:
(1)如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行; (线面平行面面平行),
(2)如果一个平面内有两条相交直线分别平行于另一平面内的两条直线,那么这两个平面平行。(线线平行面面平行),
(3)垂直于同一条直线的两个平面平行。
(4)平行于同一个平面的两个平面平行。
符号语言:
(1) ;(3) ;(4)
面面平行的性质定理:
(1)如果两个平行平面同时与第三个平面相交,那么它们的交线平行。 (面面平行线线平行)
(2)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。 (面面平行线面平行)
(3)如果两个平行平面中有一个平面垂直于一条直线,那么另一个平面也垂直于这条直线。
符号语言:
(1) ;(2) ;(3)
证明面面平行的常用方法:
(1)反证法,即
(2)判定定理或推论,即
(3)“垂直于同一直线的两个平面平行”这一性质,即
(4)向量法,两个平面的法向量平行,则这两个平面平行。
线面垂直的定义:
如果一条直线l和一个平面α内的任何一条直线垂直,就说这条直线l和这个平面α互相垂直,记作直线l叫做平面α的垂线,平面α叫做直线l的垂面。直线与平面垂直时,它们唯一的公共点P叫做垂足。
线面垂直的画法:
画线面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直,如图所示:
线面垂直的判定定理:
如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。(线线垂直线面垂直)
符号表示:
线面垂直的性质定理:
如果两条直线同垂直于一个平面,那么这两条直线平行。
(线面垂直线线平行)
线面垂直的判定定理的理解:
(1)判定定理的条件中,“平面内的两条相交直线”是关键性语句,一定要记准.
(2)如果一条直线垂直于平面内的两条直线,那么这条直线垂直于这个平面,这个结论是错误的.
(3)如果一条直线垂直于平面内的无数条直线,那么这条直线垂直于这个平面,这个结论也错误,因为这无数条直线可能平行.
证明线面垂直的方法:
(1)线面垂直的定义拓展了线线垂直的范围,线垂直于面,线就垂直于面内所有直线,这也是线面垂直的必备条件,利用这个条件可将线线垂直与线面垂直互相转化,这样就完成了空间问题与平面问题的转化.
(2)证线面垂直的方法①利用定义:若一直线垂直于平面内任一直线,则这条直线垂直于该平面.②利用线面垂直的判定定理:证一直线与一平面内的两条相交直线都垂直,③利用线面垂直的性质:两平行线中的一条垂直于平面,则另一条也垂直于这个平面,④用面面垂直的性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.⑤用面面平行的性质定理:一直线垂直于两平行平面中的一个,那么它必定垂直于另一个平面.⑥用面面垂直的性质:两相交平面同时垂直于第三个平面,那么两平面的交线垂直于第三个平面.⑦利用向量证明.
与“命题:①与三角形两边平行的平面平行于这个三角形的第三边;②...”考查相似的试题有: