返回

高中三年级数学

首页
  • 解答题
    设同时满足条件:①;②bn∈M(n∈N+,M是与n无关的常数)的无穷数列{bn}叫“嘉文”数列.已知数列{an}的前n项和Sn满足:(a为常数,且
    a≠0,a≠1).
    (1)求{an}的通项公式;
    (2)设,若数列{bn}为等比数列,求a的值,并证明此时为“嘉文”数列.
    本题信息:2012年期末题数学解答题难度较难 来源:朱潇(高中数学)
  • 本题答案
    查看答案
本试题 “设同时满足条件:①;②bn∈M(n∈N+,M是与n无关的常数)的无穷数列{bn}叫“嘉文”数列.已知数列{an}的前n项和Sn满足:(a为常数,且a≠0,a≠1).(1)求{an}的通...” 主要考查您对

等比数列的定义及性质

等比数列的通项公式

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等比数列的定义及性质
  • 等比数列的通项公式

等比数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。


等比数列的性质:

在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2
(2)若m,n∈N*,则am=anqm-n
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。


等差数列和等比数列的比较:
 

如何证明一个数列是等比数列:

证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。


等比数列的通项公式:

an=a1qn-1,q≠0,n∈N*


等比数列的通项公式的理解:

①在已知a1和q的前提下,利用通项公式可求出等比数列中的任意一项;
②在已知等比数列中任意两项的前提下,使用可求等比数列中任何一项;
③用函数的观点看等比数列的通项,等比数列{an}的通项公式,可以改写为.当q>o,且q≠1时,y=qx是一个指数函数,而是一个不为0的常数与指数函数的积,因此等比数列{an}的图象是函数的图象上的一群孤立的点;
④通项公式亦可用以下方法推导出来:

将以上(n一1)个等式相乘,便可得到
 
⑤用方程的观点看通项公式.在an,q,a1,n中,知三求一。


发现相似题
与“设同时满足条件:①;②bn∈M(n∈N+,M是与n无关的常数)的无穷...”考查相似的试题有: