返回

高中数学

首页
  • 解答题
    已知数列{an}是首项a1=
    1
    2
    ,公比为
    1
    2
    的等比数列,sn为数列{an}的前n项和,又bn+5loglog2 (1-sn)=t,常数t∈N*,数列{Cn}满足cn=an×bn
    (Ⅰ)若{cn}是递减数列,求t的最小值;
    (Ⅱ)是否存在正整数k,使ck,ck+1,ck+2这三项按某种顺序排列后成等比数列?若存在,试求出k,t的值;若不存在,请说明理由.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知数列{an}是首项a1=12,公比为12的等比数列,sn为数列{an}的前n项和,又bn+5loglog2 (1-sn)=t,常数t∈N*,数列{Cn}满足cn=an×bn.(Ⅰ)若{cn}是递减数列,...” 主要考查您对

等比数列的定义及性质

数列的概念及简单表示法

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等比数列的定义及性质
  • 数列的概念及简单表示法

等比数列的定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做公比,公比通常用字母q表示(q≠0)。


等比数列的性质:

在等比数列{an}中,有
(1)若m+n=p+q,m,n,p,q∈N*,则aman=apaq;当m+n=2p时,aman=ap2
(2)若m,n∈N*,则am=anqm-n
(3)若公比为q,则{}是以为公比的等比数列;
(4)下标成等差数列的项构成等比数列;
(5)
1)若a1>0,q>1,则{an}为递增数列;
2)a1<0,q>1, 则{an}为递减数列;
3)a1>0,0<q<1,则{an}为递减数列;
4)a1<0, 0<q<1, 则{an}为递增数列;
5)q<0,则{an}为摆动数列;若q=1,则{an}为常数列。


等差数列和等比数列的比较:
 

如何证明一个数列是等比数列:

证明一个数列是等比数列,只需证明是一个与n无关的常数即可(或an2=an-1an+1)。


数列的定义:

一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。


从函数角度看数列

数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。
特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.