本试题 “下列四个命题中,正确的是( )A.通过点(0,2)且倾斜角是15°的直线方程是y=(3-2)x+2B.设直线l1和l2的斜率分别为k1和k2,则l1和l2的夹角是θ=arctgk2-k11+k...” 主要考查您对直线的倾斜角与斜率
两直线的夹角与到角
直线的方程
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
直线的倾斜角的定义:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°。
直线的斜率的定义:
倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率。直线的斜率常用k表示。即k=tanα。斜率反映直线与x轴的倾斜程度。
直线斜率的性质:
当时,k≥0;当时,k<0;当时,k不存在。
直线倾斜角的理解:
(1)注意“两个方向”:直线向上的方向、x轴的正方向;
(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。
直线倾斜角的意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。
直线斜率的理解:
每条直线都有倾斜角,但每条直线不一定都有斜率, 斜率不存在;当 也逐渐增大; 且逐渐增大。
两直线的到角:
(1)定义:两条直线l1和l2相交构成四个角,它们是两对对顶角,我们把直线l1按逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角。
(2)直线l1到l2的角的公式:tanθ′=,l1到l2的角的取值范围是(0,π)。
两直线的夹角:
(1)定义:两条直线l1和l2相交,l1到l2的角是θ1,l2到l1的角是θ2=π-θ1,当直线l1与l2相交但不垂直时,θ1和π-θ1,仅有一个角是锐角,我们就把其中的锐角叫做两条直线的夹角θ。
(2)直线l1和l2的夹角公式:tanθ=(θ不为90°),l1与l2的夹角的取值范围是。
理解这两个公式:
(1)首先应注意到在tanθ′=中两个斜率的顺序是不能改变的,θ′是直线l1到直线l2的角,若写成,则θ′为直线l2到直线l1的角,这两者是有区别的,而在夹角公式tanθ=中,两直线的斜率没有顺序要求.
(2)在两直线的夹角为900时,我们有,同理,若,则直线l1与直线l2垂直,用这两个公式可以求解角平分线问题及与之有关的问题.
直线方程的定义:
以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
基本的思想和方法:
求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后釆用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。
直线方程的几种形式:
1.点斜式方程:
(1),(直线l过点,且斜率为k)。
(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。
3.两点式方程:已知直线经过(x1,y1),(x2,y2)两点,则直线方程为:
4.截距式方程:已知直线在x轴和y轴上的截距为a,b,则直线方程为:(a、b≠0)。
5.一般式方程:(1)定义:任何直线均可写成:Ax+By+C=0(A,B不同时为0)的形式。(2)特殊的方程如:平行于x轴的直线:y=b(b为常数);平行于y轴的直线:x=a(a为常数)。
几种特殊位置的直线方程:
与“下列四个命题中,正确的是( )A.通过点(0,2)且倾斜角是1...”考查相似的试题有: