返回

高中三年级数学

首页
  • 解答题
    已知点P(x0,y0)是椭圆E:上任意一点,x0y0≠1,直线l的方程为
    (1)判断直线l与椭圆E交点的个数;
    (2)直线l0过P点且与直线l垂直,点M(-1,0)关于直线l0的对称点为N,直线PN恒过一定点G,求点G的坐标。
    本题信息:2011年湖北省模拟题数学解答题难度较难 来源:刘佩
  • 本题答案
    查看答案
本试题 “已知点P(x0,y0)是椭圆E:上任意一点,x0y0≠1,直线l的方程为。(1)判断直线l与椭圆E交点的个数;(2)直线l0过P点且与直线l垂直,点M(-1,0)关于直线l0...” 主要考查您对

线段的定比分点

直线的方程

直线与椭圆方程的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 线段的定比分点
  • 直线的方程
  • 直线与椭圆方程的应用

线段的定比分点定义:

设点P是直线P1P2上异于P1、P2的任意一点,若存在一个实数λ,使P1P=λPP2,λ叫做点P分有向线段所成的比,P点叫做有向线段 的以定比为λ的定比分点。
当P点在线段 P1P2上时,λ>0;当P点在线段 P1P2的延长线上时,λ<-1;当P点在线段P2P1的延长线上时 -1<λ<0。
若点P分有向线段所成的比为λ,则点P分有向线段所成的比为

有向线段的定比分点的坐标公式:

(1)设
在使用定比分点的坐标公式时,应明确(x,y),(x1,y1),(x2,y2)的意义,即分别为分点,起点,终点的坐标。一般在计算中应根据题设,自行确定起点,分点和终点并根据这些点确定对应的定比λ。
(2)当λ=1时,就得到P1P2的中点公式:
(3)三角形ABC的重心公式:设,则重心


直线方程的定义:

以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。

基本的思想和方法:

求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后釆用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。

直线方程的几种形式:

1.点斜式方程:
(1),(直线l过点,且斜率为k)。
(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1
2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。
3.两点式方程:已知直线经过(x1,y1),(x2,y2)两点,则直线方程为:
4.截距式方程:已知直线在x轴和y轴上的截距为a,b,则直线方程为:(a、b≠0)。
5.一般式方程:(1)定义:任何直线均可写成:Ax+By+C=0(A,B不同时为0)的形式。(2)特殊的方程如:平行于x轴的直线:y=b(b为常数);平行于y轴的直线:x=a(a为常数)。


几种特殊位置的直线方程:

 
求直线方程的一般方法:
 
(1)直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程.应明确直线方程的几种形式及各自的特点,合理选择解决方法,一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知在两坐标轴上的截距用截距式;已知两点用两点式,这时应特别注意斜率不存在的情况.
(2)待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标等.
利用待定系数法求直线方程的步骤:①设方程;②求系数;③代入方程得直线方程,如果已知直线过一个定点,可以利用直线的点斜式求方程,也可以利用斜截式、截距式等形式求解.

直线与椭圆的方程:

设直线l的方程为:Ax+By+C=0(A、B不同时为零),椭圆(a>b>0),将直线的方程代入椭圆的方程,消去y(或x)得到一元二次方程,进而应用根与系数的关系解题。


椭圆的焦半径、焦点弦和通径:

(1)焦半径公式:
①焦点在x轴上时:|PF1|=a+ex0,|PF2|=a-ex0
②焦点在y轴上时:|PF1|=a+ey0,|PF2|=a-ey0;
(2)焦点弦:
过椭圆焦点的弦称为椭圆的焦点弦.设过椭圆的弦为AB,其中A(x1,y1),B(x2,y2),则|AB|=2a+e(x1+x2).由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数.
(3)通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为 

椭圆中焦点三角形的解法:

椭圆上的点与两个焦点F1,F2所构成的三角形,通常称之为焦点三角形,解焦点三角形问题经常使用三角形边角关系定理,解题中,通过变形,使之出现,这样便于运用椭圆的定义,得到a,c的关系,打开解题思路,整体代换求是这类问题中的常用技巧。


关于椭圆的几个重要结论:

(1)弦长公式:

(2)焦点三角形:
上异于长轴端点的点,
(3)以椭圆的焦半径为直径的圆必与以长轴为直径的圆内切.
(4)椭圆的切线:处的切线方程为


(5)对于椭圆,我们有