返回

高中数学

首页
  • 解答题
    已知△ABC与△DBC都是边长为
    2
    3
    3
    的等边三角形,且平面ABC⊥平面DBC,过点A作PA⊥平面ABC,且AP=2.
    (Ⅰ)求证:PA平面DBC;
    (Ⅱ)求直线PD与平面ABC所成角的大小.
    魔方格

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知△ABC与△DBC都是边长为233的等边三角形,且平面ABC⊥平面DBC,过点A作PA⊥平面ABC,且AP=2.(Ⅰ)求证:PA∥平面DBC;(Ⅱ)求直线PD与平面ABC所成角的大小.” 主要考查您对

直线与平面所成的角

直线与平面平行的判定与性质

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 直线与平面所成的角
  • 直线与平面平行的判定与性质

直线与平面所成的角的定义:

①直线和平面所成的角有三种:
a.斜线和平面所成的角:一条直线与平面α相交,但不和α垂直,这条直线叫做平面α的斜线.斜线与α的交点叫做斜足,过斜线上斜足以外的点向平面引垂线,过垂足与斜足的直线叫做斜线在平面α内的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.
b.垂线与平面所成的角:一条直线垂直于平面,则它们所成的角是直角。
c.一条直线和平面平行,或在平面内,则它们所成的角为00.
②取值范围:00≤θ≤900
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。


最小角定理:

斜线和它在平面内的射影所成的角(即线面角),是斜线和这个平面内的所有直线所成角中最小的角。


求直线与平面所成的角的方法:

(1)找角:求直线与平面所成角的一般过程:①通过射影转化法,作出直线与平面所成的角;②在三角形中求角的大小.
(2)向量法:设PA是平面α的斜线,,向量n为平面α的法向量,设PA与平面α所成的角为θ,则


线面平行的定义:

若直线和平面无公共点,则称直线和平面平行。

图形表示如下:

线面平行的判定定理:

平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行

符号语言:

 线面平行的性质定理:

如果一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 线面平行线线平行

 符号语言:


 


证明直线与平面平行的常用方法:

(l)反证法,即 
(2)判定定理法,即 
(3)面面平行的性质定理,即 
(4)向量法,平面外的直线的方向向量n与平面的法向量n垂直,则直线与平面平行,即


发现相似题
与“已知△ABC与△DBC都是边长为233的等边三角形,且平面ABC⊥平面DB...”考查相似的试题有: