返回

高中三年级数学

首页
  • 单选题
    有下面四个判断:
    ①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题
    ②若“p或q”为真命题,则p、q均为真命题
    ③命题“a、b∈R,a2+b2≥2(a﹣b﹣1)”的否定是:“a、b∈R,a2+b2≤2(a﹣b﹣1)”
    ④若函数的图象关于原点对称,则a=3
    其中正确的个数共有
    [     ]

    A.0个
    B.1个
    C.2个
    D.3个
    本题信息:2012年江西省模拟题数学单选题难度一般 来源:朱潇(高中数学)
  • 本题答案
    查看答案
本试题 “有下面四个判断:①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题②若“p或q”为真命题,则p、q均为真命题③命题“a、b∈R,a2+b2≥2(a﹣b﹣1)”的否定是:“a...” 主要考查您对

真命题、假命题

全称量词与存在性量词

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 全称量词与存在性量词

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


1、全称量词与全称命题:
①全称量词:短语“对所有的”,“对任意的”在陈述中表示整体或全部的含义,逻辑中通常叫做全称量词,并用符号“”表示;
②全称命题:含有全称量词的命题,叫做全称命题
③全称命题的格式:“对M中任意一个x,有p(x)成立”的命题,记为?x∈M,p(x),读作“对任意x属于M,有p(x)成立”。
2、存在量词与特称命题:
①存在量词:短语“存在一个”,“至少有一个”在陈述中表示个别或者一部分的含义,在逻辑中通常叫做存在量词,并用符号“”表示。
②特称命题:含有存在量词的命题,叫做特称命题;
③“存在M中的一个x0,使p(x0)成立”的命题,记为?x0∈M,p(x0),读作“存在一个x0属于M,使p(x0)成立”。
3、全称命题的否定:
一般地,对于含有一个量词的全称命题的否定,有下面的结论:
全称命题p:,它的否命题
4、特称命题的否定:
一般地,对于含有一个量词的特称命题的否定,有下面的结论:
特称命题p:,其否定命题

发现相似题
与“有下面四个判断:①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是...”考查相似的试题有: