返回

高中数学

首页
  • 解答题
    已知函数f(x)满足f(x)=x3+f ′(
    2
    3
    )x2-x+C
    (其中f ′(
    2
    3
    )
    为f(x)在点x=
    2
    3
    处的导数,C为常数).
    (1)求函数f(x)的单调区间;
    (2)若方程f(x)=0有且只有两个不等的实数根,求常数C;
    (3)在(2)的条件下,若f(-
    1
    3
    )>0
    ,求函数f(x)的图象与x轴围成的封闭图形的面积.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数f(x)满足f(x)=x3+f ′(23)x2-x+C(其中f ′(23)为f(x)在点x=23处的导数,C为常数).(1)求函数f(x)的单调区间;(2)若方程f(x)=0有且只有两...” 主要考查您对

函数的单调性与导数的关系

定积分的概念及几何意义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 函数的单调性与导数的关系
  • 定积分的概念及几何意义

导数和函数的单调性的关系:

(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;
(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。


利用导数求解多项式函数单调性的一般步骤:

①确定f(x)的定义域;
②计算导数f′(x);
③求出f′(x)=0的根;
④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。

函数的导数和函数的单调性关系特别提醒:

若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件。 


定积分的定义:

设函数f(x)在[a,b]上有界(通常指有最大值和最小值),在a与b之间任意插入n-1个分点,,将区间[a,b]分成n个小区间(i=1,2,…,n),记每个小区间的长度为(i=1,2,…,n),在上任取一点ξi,作函数值f(ξi)与小区间长度的乘积f(ξi (i=1,2,…,n),并求和,记λ=max{△xi;i=1,2,…,n },如果当λ→0时,和s总是趋向于一个定值,则该定值便称为函数f(x)在[a,b]上的定积分,记为,即,其中, 称为函数f(x)在区间[a,b]的积分和。

定积分的几何意义:

定积分在几何上,
当f(x)≥0时,表示由曲线y=f(x)、直线x=a、直线x=b与x轴所围成的曲边梯形的面积;
当f(x)≤0时,表示由曲线y=f(x)、直线x=a、直线x=b与x轴所围成的曲边梯形的面积的负值;
一般情况下,表示介于曲线y=f(x)、两条直线x=a、x=b与x轴之间的个部分面积的代数和。


定积分的性质:

(1)(k为常数);
(2)
(3)(其中a<c<b)。


 定积分特别提醒:

①定积分不是一个表达式,而是一个常数,它只与被积函数及积分区间有关,而与积分变量的记法无关,例如: 
②定义中区间的分法和ξ的取法是任意的,