返回

高中三年级数学

首页
  • 解答题
    如图,已知抛物线C1的方程是y=ax2(a>0),圆C2的方程是x2+(y+1)2=5,直线l:y=2x+m(m<0)是C1,C2的公切线,F是C1的焦点,
    (1)求m与a的值;
    (2)设A是抛物线C1上的一动点,以A为切点作C1的切线交y轴于点B,若,则点M在一定直线上,试证明之。

    本题信息:2011年山东省模拟题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “如图,已知抛物线C1的方程是y=ax2(a>0),圆C2的方程是x2+(y+1)2=5,直线l:y=2x+m(m<0)是C1,C2的公切线,F是C1的焦点,(1)求m与a的值;(2)设A是抛物线C1上...” 主要考查您对

导数的概念及其几何意义

向量的加、减法运算及几何意义

圆的切线方程

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 导数的概念及其几何意义
  • 向量的加、减法运算及几何意义
  • 圆的切线方程

平均变化率:

一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率
  
上式中的值可正可负,但不为0.f(x)为常数函数时, 

瞬时速度:
如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即
若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.

函数y=f(x)在x=x0处的导数的定义

一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作,即

导函数:

如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=

切线及导数的几何意义:

(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P处的切线。
(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=


瞬时速度特别提醒:

①瞬时速度实质是平均速度当时的极限值.
②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,

 函数y=f(x)在x=x0处的导数特别提醒:

①当时,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.
②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.
③在点x=x0处的导数的定义可变形为:
    

导函数的特点:

①导数的定义可变形为:
②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,
③可导的周期函数其导函数仍为周期函数,
④并不是所有函数都有导函数.
⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.
⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).

导数的几何意义(即切线的斜率与方程)特别提醒

①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0 =f′(x0)(x- x0).
②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.
③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,
④显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<o,切线与x轴正向的夹角为钝角;f(x0) =0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.


向量加法的定义:

已知非零向量ab,在平面内任取一点A,作,再做向量,则向量叫做的和,即
作向量的加法有“三角形法则”和“平行四边形法则”,其中“平行四边形法则”只适用于不共线的向量。

向量加法的三角形法则:

已知非零向量a,b,在平面内任意取一点A,作a,

这种求向量和的方法称为向量加法的三角形法则,如图
 
 
向量加法的平行四边形法则:
 
以同一点O起点的两个已知向量a,b为邻边作平行四边形OACB,则以O为起点的对角线OC就是ab的和,这种作两个向量和的方法叫做向量加法的平行四边形法则,如图.
  

向量减法的定义:

向量与向量的相反向量的和,叫做向量与向量的差,记作:
作向量减法有“三角形法则”:设,那么,由减向量和终点指向被减向量和终点。
注意:此处减向量与被减向量的起点相同。

向量减法的作图法:

 
 
  
 因此,a-b可以表示为从向量b的终点指向向量a的终点的向量,这就是向量减法的几何意义.

坐标运算:

已知,则


向量加减法的运算律:

(1)交换律:
(2)结合律:


求向量的和的三角形法则的理解:

使用三角形法则特别要注意“首尾相接”,具体做法是把用小写字母表示的向量,用两个大写字母表示(其中后面向量的起点与其前一个向量的终点重合,即用同一个字母表示),则由第一个向量的起点指向最后一个向量终点的有向线段就表示这些向量的和。对于n个向量,仍有 这可以称为向量加法的多边形法则。

作两个向量的和向量,可分四步:

①取点,注意取点的任意性;
②作相等向量,分别作与两个已知向量相等的向量,使它们的起点重合;
③作平行四边形,以两个向量为邻边作平行四边形;
④作和向量,与两个向量有共同起点的对角线作为和向量,共同的起点作为和向量的起点,对角线的另一个端点作为和向量的终点.当两个向量不共线时,三角形法则和平行四边形法则是一致的;当两个向量共线时,三角形法则同样适用,而平行四边形法则就不适用了.

向量的加法需要说明的几点:

①当两个非零向量ab不共线时,a+b的方向与a,b的方向都不相同,且
②当两个非零向量ab共线时,
a.向量ab同向(如下图),即向量a+ba(b)方向相同,且
 
b.向量ab反向(如上图)且|a|<|b|时,即a+bb方向相同(与a方向相反),且

综上可知

向量减法的理解:

①定义向量减法是借助了相反向量和向量加法,其实,向量减法的实质是向量加法的逆运算.两个向量的差仍是向量;
②作差向量时,作法一较为复杂,作法二较为简捷,应根据问题的需要灵活运用;
③以为邻边作平行四边形ABCD,则两条对角线表示的向量为这一结论在以后的应用是非常广泛的,应该加强理解并记住;
④对于任意一点O,简记为“中减起”,在解题中经常用到,必须记住.


圆的切线方程:

1、已知圆
(1)若已知切点在圆上,则切线只有一条,其方程是
(2)当圆外时,表示过两个切点的切点弦方程。
(3)过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线。
(4)斜率为k的切线方程可设为y=kx+b,再利用相切条件求b,必有两条切线。
2、已知圆
(1)过圆上的点的切线方程为
(2)斜率为k的圆的切线方程为


圆的切线方程的求法:

①代数法:设出切线方程,利用切线与圆仅有一个交点,将直线方程代入圆的方程,从而△=0,可求解;
②几何法利用几何特征:圆心到切线的距离等于圆的半径,可求解.

过定点的圆的切线方程:

①过圆上一点的切线方程:
与圆的切线方程是
与圆的切线方程是
与圆的切线方程是
与圆的切线方程是

②过圆外一点的切线方程:设外一点,求过P0点的圆的切线.
方法l:设切点是,解方程组

求出切点P1的坐标,即可写出切线方程。
方法2:设切线方程是 ,再由 求出待定系数k,就可写出切线方程.
特别提醒:一般说来,方法2比较简便,但应注意,可能遗漏k不存在的切线.因此,当解出的k值唯一时,应观察图形,看是否有垂直于x轴的切线.