返回

高中数学

首页
  • 单选题
    下列说法正确的是(  )
    A.a,b∈R,且a>b,则a2>b2
    B.若a>b,c>d,则 
    a
    c
    b
    d
    C.a,b∈R,且ab≠0,则 
    a
    b
    +
    b
    a
    ≥2
    D.a,b∈R,且a>|b|,则an>bn(n∈N*

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “下列说法正确的是( )A.a,b∈R,且a>b,则a2>b2B.若a>b,c>d,则 ac>bdC.a,b∈R,且ab≠0,则 ab+ba≥2D.a,b∈R,且a>|b|,则an>bn(n∈N*)” 主要考查您对

真命题、假命题

基本不等式及其应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 基本不等式及其应用

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


基本不等式:

(当且仅当a=b时取“=”号);
变式:①(当且仅当a=b时取“=”号),即两个正数的算术平均不小于它们的几何平均。
;③;④


对基本不等式的理解:

(1)基本不等式的证明是利用重要不等式推导的,即,即有
(2)基本不等式又称为均值定理、均值不等式等,其中的算术平均数,的几何平均数,本定理也可叙述为:两个正数的算术平均数不小于它们的几何平均数.
(3)要特别注意不等式成立的条件和等号成立的条件.均值不等式中:①当a=b时取等号,即


对于两个正数x,y,若已知xy,x+y,中的某一个为定值,可求出其余各个的最值:
如:(1)当xy=P(定值),那么当x=y时,和x+y有最小值2
(2)x+y=S(定值),那么当x=y时,积xy有最大值
(3)已知x2+y2=p,则x+y有最大值为

应用基本的不等式解题时:

注意创设一个应用基本不等式的情境及使等号成立的条件,即“一正、二定、三相等”。

利用基本不等式比较实数大小:

(1)注意均值不等式的前提条件.
(2)通过加减项的方法配凑成使用均值定理的形式.
(3)注意“1”的代换.
(4)灵活变换基本不等式的形式,并注重其变形形式的运用.重要不等式的形式可以是,也可以是,还可以是等,不仅要掌握原来的形式,还要掌握它的几种变形形式以及公式的逆用等,以便应用.
(5)合理配组,反复应用均值不等式。 


基本不等式的几种变形公式: