返回

高中数学

首页
  • 单选题
    椭圆C:
    x2
    25
    +
    y2
    9
    =1
    的焦点为F1,F2,有下列研究问题及结论:
    ①曲线
    x2
    25-k
    +
    y2
    9-k
    =1 (k<9)
    与椭圆C的焦点相同;
    ②一条抛物线的焦点是椭圆C 的短轴的端点,顶点在原点,则其标准方程为x2=±6y;
    ③若点P为椭圆上一点,且满足
    PF1
    PF2
    =0
    ,则|
    PF1
    +
    PF2
    |
    =8.
    则以上研究结论正确的序号依次是(  )
    A.①②B.②③C.①③D.①②③

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “椭圆C:x225+y29=1的焦点为F1,F2,有下列研究问题及结论:①曲线x225-k+y29-k=1 (k<9)与椭圆C的焦点相同;②一条抛物线的焦点是椭圆C 的短轴的端点,顶点在原...” 主要考查您对

真命题、假命题

椭圆的定义

椭圆的性质(顶点、范围、对称性、离心率)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 真命题、假命题
  • 椭圆的定义
  • 椭圆的性质(顶点、范围、对称性、离心率)

命题的概念:

1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。


注意:

1、并不是所有的语句都是命题,只有能够判断真假的语句才是命题。

2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。


椭圆的第一定义:

平面内与两个定点为F1,F2的距离的和等于常数(大于)的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。特别地,当常数等于时,轨迹是线段F1F2,当常数小于时,无轨迹。

椭圆的第二定义:

平面内到定点F的距离和到定直线l的距离之比等于常数e(0<e<1)的点的轨迹,叫做椭圆,定点F叫椭圆的焦点,定直线l叫做椭圆的准线,e叫椭圆的离心率。


椭圆的定义应该包含几个要素:

 
利用椭圆的定义解题:
 
当题目中出现一点在椭圆上的条件时,注意使用定义

 椭圆的离心率:

椭圆的焦距与长轴长之比叫做椭圆的离心率。


椭圆的性质:

1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:
5、离心率: 
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。


利用椭圆的几何性质解题:

利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。

椭圆中求最值的方法:

求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.

椭圆中离心率的求法:

在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,从而求离心率或离心率的取值范围.


发现相似题
与“椭圆C:x225+y29=1的焦点为F1,F2,有下列研究问题及结论:①...”考查相似的试题有: