本试题 “设不等式|2x﹣1|<1的解集为M.(Ⅰ) 求集合M;(Ⅱ) 若a,b∈M,试比较ab+1与a+b的大小” 主要考查您对绝对值不等式
比较法
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
绝对值不等式:
当a>0时,有;
或x<-a 。
比较法分类:
(1)求差比较法:要证a>b,只要证a-b>0;
(2)求商比较法:要证a>b,且b>0,只要证>1;
比较法的步骤是:
作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。
实数比较大小的依据:
在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a、b之间具有以下性质:如图,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b,反之也成立,从而a-b>0等价于a>b;a-b=0等价于a=b;a-b<0等价于a<b.
比较数(式)的大小常用的方法:
(1)一是利用作差法来判断差的符号;二是利用作商法(分母为正时)来判断商与1的大小。这两种方法的关键是变形,常用的变形的技巧有因式分解、通分、配方、有理化等,当两个代数式正负不确定且为多项式形式时常用作差法比较大小.当两个代数式均为正且为幂的乘积式时常用作商法比较大小.
(2)比较大小时应熟记并应用“若a>b且ab>0则”这一结论,不能强化也不能弱化条件,在此时应引起特别重视。
与“设不等式|2x﹣1|<1的解集为M.(Ⅰ) 求集合M;(Ⅱ) 若a,b∈...”考查相似的试题有: