返回

高中数学

首页
  • 单选题
    已知实数a,b满足:
    a+bi
    1+i
    =
    7
    2
    -
    11
    2
    i
    (其中i是虚数单位),若用Sn表示数列{a+bn}的前n项的和,则Sn的最大值是(  )
    A.16B.15C.14D.12

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知实数a,b满足:a+bi1+i=72-112i(其中i是虚数单位),若用Sn表示数列{a+bn}的前n项的和,则Sn的最大值是( )A.16B.15C.14D.12” 主要考查您对

等差数列的前n项和

复数相等的充要条件

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 等差数列的前n项和
  • 复数相等的充要条件

等差数列的前n项和的公式:

(1),(2),(3),(4)
当d≠0时,Sn是关于n的二次函数且常数项为0,{an}为等差数列,反之不能。


等差数列的前n项和的有关性质

(1),…成等差数列;
(2){an}有2k项时,=kd;
(3){an}有2k+1项时,S=(k+1)ak+1=(k+1)a, S=kak+1=ka,S:S=(k+1):k,S-S=ak+1=a


解决等差数列问题常用技巧:

1、等差数列中,已知5个元素:a1,an,n,d, S中的任意3个,便可求出其余2个,即知3求2。
为减少运算量,要注意设元的技巧,如奇数个成等差,可设为…,a-2d,a-d,a,a+d,a+2d,…,偶数个成等差,可设为…,a-3d,a-d,a+d,a+3d,…
2、等差数列{an}中,(1)若ap=q,aq=p,则列方程组可得:d=-1,a1=p+q-1,ap+q=0,S=-(p+q);
(2)当Sp=Sq时(p≠q),数形结合分析可得Sn中最大,Sp+q=0,此时公差d<0。 
 


两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。特殊地,a,b∈R时,a+bi=0a=0,b=0.
复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。


复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的方法步骤:

(1)把给的复数化成复数的标准形式;
(2)根据复数相等的充要条件解之。