本试题 “设函数y=f(x)由方程x|x|+y|y|=1确定,下列结论正确的是( )(请将你认为正确的序号都填上)①f(x)是R上的单调递减函数;②对于任意x∈R,f(x)+x>0恒成立...” 主要考查您对分段函数与抽象函数
函数的零点与方程根的联系
反函数
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
分段函数:
1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的;
分段函数是一个函数,定义域、值域都是各段的并集。
抽象函数:
我们把没有给出具体解析式的函数称为抽象函数;
一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。
知识点拨:
1、绝对值函数去掉绝对符号后就是分段函数。
2、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。
3、分段函数的处理方法:分段函数分段研究。
函数零点的定义:
一般地,如果函数y =f(x)在实数a处的值等于零,即f(a)=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。
函数零点具有的性质:
对于任意函数y=(x)只要它的图象是连续不间断的,则有:
(1)当它通过零点时(不是二重零点),函数值变号.如函数f(x)=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.
(2)在相邻两个零点之间所有的函数值保持同号,
方程的根与函数的零点的联系:
方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点
定义:
设式子y=f(x)表示y是x的函数,定义域为A,值域为C,从式子y=f(x)中解出x,得到式子x=(y),如果对于y在C中的任何一个值,通过式子x=(y),x在A中都有唯一确定的值和它对应,那么式子x=(y)就表示y是x的函数,这样的函数叫做y=f(x)的反函数,记作x=f-1(y),即x=(y)=f-1(y),一般对调x=f-1(y)中的字母x,y,把它改写成y=f-1(x)。
反函数的一些性质:
(1)反函数的定义域和值域分别是原函数的值域和定义域,称为互调性;
(2)定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数;
(3)函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称,但要注意:函数y=f(x)的图象与其反函数x=(y)=f-1(y)的图象相同。(对称性)
(4)设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。
(5)函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x )的反函数是y=f(x),称为互反性,但要特别注意;
(6)函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上,
如与互为反函数且有一个交点是,它不再直线y=x上。
(7)还原性:。
求反函数的步骤:
(1)将y=f(x)看成方程,解出x=f-1(y);
(2)将x,y互换得y =f-1(x);
(3)写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定);
另外:分段函数的反函数可以分别求出各段函数的反函数再合成。
与“设函数y=f(x)由方程x|x|+y|y|=1确定,下列结论正确的是( ...”考查相似的试题有: